Esempio n. 1
0
        /// <summary>
        /// Computes a Scms model from the MFCC representation of a song.
        /// </summary>
        /// <param name="mfcc">Comirva.Audio.Util.Maths.Matrix mfcc</param>
        /// <returns></returns>
        public static Scms GetScmsNoInverse(Comirva.Audio.Util.Maths.Matrix mfccs, string name)
        {
            DbgTimer t = new DbgTimer();

            t.Start();

            Comirva.Audio.Util.Maths.Matrix mean = mfccs.Mean(2);

                        #if DEBUG
            if (Analyzer.DEBUG_INFO_VERBOSE)
            {
                if (Analyzer.DEBUG_OUTPUT_TEXT)
                {
                    mean.WriteText(name + "_mean.txt");
                }
                mean.DrawMatrixGraph(name + "_mean.png");
            }
                        #endif

            // Covariance
            Comirva.Audio.Util.Maths.Matrix covarMatrix = mfccs.Cov(mean);
                        #if DEBUG
            if (Analyzer.DEBUG_INFO_VERBOSE)
            {
                if (Analyzer.DEBUG_OUTPUT_TEXT)
                {
                    covarMatrix.WriteText(name + "_covariance.txt");
                }
                covarMatrix.DrawMatrixGraph(name + "_covariance.png");
            }
                        #endif

            Comirva.Audio.Util.Maths.Matrix covarMatrixInv = new Comirva.Audio.Util.Maths.Matrix(covarMatrix.Rows, covarMatrix.Columns);

            // Store the Mean, Covariance, Inverse Covariance in an optimal format.
            int  dim = mean.Rows;
            Scms s   = new Scms(dim);
            int  l   = 0;
            for (int i = 0; i < dim; i++)
            {
                s.mean[i] = (float)mean.MatrixData[i][0];
                for (int j = i; j < dim; j++)
                {
                    s.cov[l]  = (float)covarMatrix.MatrixData[i][j];
                    s.icov[l] = (float)covarMatrixInv.MatrixData[i][j];
                    l++;
                }
            }

            Dbg.WriteLine("GetScmsNoInverse - Execution Time: {0} ms", t.Stop().TotalMilliseconds);
            return(s);
        }
		public AudioFeature Calculate(double[] input)
		{
			//pack the mfccs into a pointlist
			double[][] mfccCoefficients = mfcc.Process(input);

			//check if element 0 exists
			if(mfccCoefficients.Length == 0)
				throw new ArgumentException("The input stream is to short to process;");

			//create mfcc matrix
			Matrix mfccs = new Matrix(mfccCoefficients);
			#if DEBUG
			mfccs.WriteText("mfccdata-mandelellis.txt");
			mfccs.DrawMatrixGraph("mfccdata-mandelellis.png");
			#endif

			// compute mean
			//Matrix mean = mfccs.Mean(1).Transpose();
			Matrix mean = mfccs.Mean(2);
			#if DEBUG
			mean.WriteText("mean-mandelellis.txt");
			mean.DrawMatrixGraph("mean-mandelellis.png");
			#endif
			
			// create covariance matrix
			Matrix covarMatrix = mfccs.Cov();
			#if DEBUG
			covarMatrix.WriteText("covariance-mandelellis.txt");
			covarMatrix.DrawMatrixGraph("covariance-mandelellis.png");
			#endif
			
			// Inverse Covariance
			Matrix covarMatrixInv;
			try {
				//covarMatrixInv = covarMatrix.Inverse();
				covarMatrixInv = covarMatrix.InverseGausJordan();
			} catch (Exception) {
				Console.Error.WriteLine("Mandel Ellis Extraction Failed!");
				return null;
			}
			#if DEBUG
			covarMatrixInv.WriteText("inverse_covariance-mandelellis.txt");
			covarMatrixInv.DrawMatrixGraph("inverse_covariance-mandelellis.png");
			#endif

			MandelEllis.GmmMe gmmMe = new MandelEllis.GmmMe(mean, covarMatrix, covarMatrixInv);
			MandelEllis mandelEllis = new MandelEllis(gmmMe);
			return mandelEllis;
		}
Esempio n. 3
0
	public double[][] idct(double[][] F)
	{
		// convert two dimensional data to a Comirva Matrix
		Matrix mat = new Matrix(F, rows, columns);
		#if DEBUG
		mat.WriteText("idct-before.txt");
		#endif

		// Perform the IDCT (Inverse Discrete Cosine Transform)
		Matrix iDctResult = dctMatrix.Transpose() * mat;
		
		#if DEBUG
		iDctResult.WriteText("idct-after.txt");
		#endif

		// return as two dimensional array
		return iDctResult.MatrixData;
	}
Esempio n. 4
0
	public double[][] dct(double[][] f)
	{
		// convert two dimensional data to a Comirva Matrix
		Matrix mat = new Matrix(f, rows, columns);
		#if DEBUG
		mat.WriteText("dct-before.txt");
		#endif
		
		// Perform the DCT (Discrete Cosine Transform)
		Matrix dctResult = dctMatrix * mat;
		
		#if DEBUG
		dctResult.WriteText("dct-after.txt");
		#endif

		// return as two dimensional array
		return dctResult.MatrixData;
	}
Esempio n. 5
0
        /// <summary>
        /// Computes a Scms model from the MFCC representation of a song.
        /// </summary>
        /// <param name="mfcc">Comirva.Audio.Util.Maths.Matrix mfcc</param>
        /// <returns></returns>
        public static Scms GetScms(Comirva.Audio.Util.Maths.Matrix mfccs, string name)
        {
            DbgTimer t = new DbgTimer();

            t.Start();

            Comirva.Audio.Util.Maths.Matrix mean = mfccs.Mean(2);

                        #if DEBUG
            if (Analyzer.DEBUG_INFO_VERBOSE)
            {
                if (Analyzer.DEBUG_OUTPUT_TEXT)
                {
                    mean.WriteText(name + "_mean.txt");
                }
                mean.DrawMatrixGraph(name + "_mean.png");
            }
                        #endif

            // Covariance
            Comirva.Audio.Util.Maths.Matrix covarMatrix = mfccs.Cov(mean);
                        #if DEBUG
            if (Analyzer.DEBUG_INFO_VERBOSE)
            {
                if (Analyzer.DEBUG_OUTPUT_TEXT)
                {
                    covarMatrix.WriteText(name + "_covariance.txt");
                }
                covarMatrix.DrawMatrixGraph(name + "_covariance.png");
            }
                        #endif

            // Inverse Covariance
            Comirva.Audio.Util.Maths.Matrix covarMatrixInv;
            try {
                covarMatrixInv = covarMatrix.InverseGausJordan();
            } catch (Exception) {
                Dbg.WriteLine("MatrixSingularException - Scms failed!");
                return(null);
            }
                        #if DEBUG
            if (Analyzer.DEBUG_INFO_VERBOSE)
            {
                if (Analyzer.DEBUG_OUTPUT_TEXT)
                {
                    covarMatrixInv.WriteAscii(name + "_inverse_covariance.ascii");
                }
                covarMatrixInv.DrawMatrixGraph(name + "_inverse_covariance.png");
            }
                        #endif

            // Store the Mean, Covariance, Inverse Covariance in an optimal format.
            int  dim = mean.Rows;
            Scms s   = new Scms(dim);
            int  l   = 0;
            for (int i = 0; i < dim; i++)
            {
                s.mean[i] = (float)mean.MatrixData[i][0];
                for (int j = i; j < dim; j++)
                {
                    s.cov[l]  = (float)covarMatrix.MatrixData[i][j];
                    s.icov[l] = (float)covarMatrixInv.MatrixData[i][j];
                    l++;
                }
            }

            Dbg.WriteLine("Compute Scms - Execution Time: {0} ms", t.Stop().TotalMilliseconds);
            return(s);
        }