// ------------------------
		// Constructor
		// ------------------------

		/// <summary>
		/// Cholesky algorithm for symmetric and positive definite matrix.
		/// </summary>
		/// <param name="Arg">Square, symmetric matrix.</param>
		public CholeskyDecomposition (Matrix Arg)
		{
			// Initialize.
			double[][] A = Arg.GetArray();
			n = Arg.GetRowDimension();
			
			L = new double[n][];
			for (int i=0;i<n;i++)
				L[i] = new double[n];
			
			isspd = (Arg.GetColumnDimension() == n);
			// Main loop.
			for (int j = 0; j < n; j++)
			{
				double[] Lrowj = L[j];
				double d = 0.0;
				for (int k = 0; k < j; k++)
				{
					double[] Lrowk = L[k];
					double s = 0.0;
					for (int i = 0; i < k; i++)
					{
						s += Lrowk[i]*Lrowj[i];
					}
					Lrowj[k] = s = (A[j][k] - s)/L[k][k];
					d = d + s*s;
					isspd = isspd & (A[k][j] == A[j][k]);
				}
				d = A[j][j] - d;
				isspd = isspd & (d > 0.0);
				L[j][j] = Math.Sqrt(Math.Max(d,0.0));
				for (int k = j+1; k < n; k++)
				{
					L[j][k] = 0.0;
				}
			}
		}
Esempio n. 2
0
        /// <summary>
        /// X.powEquals() calculates the power of each element of the matrix.
        /// </summary>
        /// <param name="exp"></param>
        /// <returns>Matrix</returns>
        public Matrix Pow(double exp)
        {
            Matrix X = new Matrix(rowCount,columnCount);
            double[][] C = X.GetArray();

            for (int i = 0; i < rowCount; i++)
                for (int j = 0; j < columnCount; j++)
                    C[i][j] = Math.Pow(matrixData[i][j], exp);

            return X;
        }
Esempio n. 3
0
 /// <summary>Get matrixData submatrix.</summary>
 /// <param name="r">Array of row indices.</param>
 /// <param name="j0">Initial column index</param>
 /// <param name="j1">Final column index</param>
 /// <returns>matrixData(r(:),j0:j1)</returns>
 /// <exception cref="">IndexOutOfRangeException Submatrix indices</exception>
 public Matrix GetMatrix(int[] r, int j0, int j1)
 {
     Matrix X = new Matrix(r.Length,j1-j0+1);
     double[][] B = X.GetArray();
     try {
         for (int i = 0; i < r.Length; i++) {
             for (int j = j0; j <= j1; j++) {
                 B[i][j-j0] = matrixData[r[i]][j];
             }
         }
     } catch(Exception) {
         throw new Exception("Submatrix indices");
     }
     return X;
 }
Esempio n. 4
0
		/// <summary>Matrix transpose.</summary>
		/// <returns>matrixData'</returns>
		public Matrix Transpose()
		{
			var X = new Matrix(columnCount,rowCount);
			var C = X.GetArray();
			for (int i = 0; i < rowCount; i++)
			{
				for (int j = 0; j < columnCount; j++)
				{
					C[j][i] = matrixData[i][j];
				}
			}
			return X;
		}
		// Return lower triangular factor
		// @return     L
		public Matrix GetL ()
		{
			Matrix X = new Matrix(m,n);
			double[][] L = X.GetArray();
			for (int i = 0; i < m; i++)
			{
				for (int j = 0; j < n; j++)
				{
					if (i > j)
					{
						L[i][j] = LU[i][j];
					}
					else if (i == j)
					{
						L[i][j] = 1.0;
					}
					else
					{
						L[i][j] = 0.0;
					}
				}
			}
			return X;
		}
Esempio n. 6
0
        /// <summary>Divide matrixData matrix by matrixData scalar, C = matrixData/s</summary>
        /// <param name="s">scalar</param>
        /// <returns>matrixData/s</returns>
        public Matrix Divide(double s)
        {
            if (s == 0) return this;

            Matrix X = new Matrix(rowCount,columnCount);
            double[][] C = X.GetArray();
            for (int i = 0; i < rowCount; i++)
            {
                for (int j = 0; j < columnCount; j++)
                {
                    C[i][j] = matrixData[i][j] / s;
                }
            }
            return X;
        }
Esempio n. 7
0
 /// <summary>Element-by-element multiplication, C = matrixData.*B</summary>
 /// <param name="B">another matrix</param>
 /// <returns>matrixData.*B</returns>
 public Matrix ArrayTimes(Matrix B)
 {
     CheckMatrixDimensions(B);
     Matrix X = new Matrix(rowCount,columnCount);
     double[][] C = X.GetArray();
     for (int i = 0; i < rowCount; i++)
     {
         for (int j = 0; j < columnCount; j++)
         {
             C[i][j] = matrixData[i][j] * B.matrixData[i][j];
         }
     }
     return X;
 }
Esempio n. 8
0
 /// <summary>Construct matrixData matrix from matrixData copy of matrixData 2-D array.</summary>
 /// <param name="matrixData">Two-dimensional array of doubles.</param>
 /// <exception cref="">ArgumentException All rows must have the same length</exception>
 public static Matrix ConstructWithCopy(double[][] matrixData)
 {
     int rows = matrixData.Length;
     int columns = matrixData[0].Length;
     Matrix X = new Matrix(rows,columns);
     double[][] C = X.GetArray();
     for (int i = 0; i < rows; i++)
     {
         if (matrixData[i].Length != columns)
         {
             throw new ArgumentException ("All rows must have the same length.");
         }
         for (int j = 0; j < columns; j++)
         {
             C[i][j] = matrixData[i][j];
         }
     }
     return X;
 }
		// Return the Householder vectors
		// @return     Lower trapezoidal matrix whose columns define the reflections
		public Matrix GetH ()
		{
			Matrix X = new Matrix(m,n);
			double[][] H = X.GetArray();
			for (int i = 0; i < m; i++)
			{
				for (int j = 0; j < n; j++)
				{
					if (i >= j)
					{
						H[i][j] = QR[i][j];
					}
					else
					{
						H[i][j] = 0.0;
					}
				}
			}
			return X;
		}
		// ------------------------
		//   Constructor
		// ------------------------

		/// <summary>
		/// Check for symmetry, then construct the eigenvalue decomposition
		/// </summary>
		/// <param name="Arg">Square matrix</param>
		public EigenvalueDecomposition (Matrix Arg)
		{
			double[][] A = Arg.GetArray();
			n = Arg.GetColumnDimension();
			
			V = new double[n][];
			for (int i=0;i<n;i++)
				V[i] = new double[n];
			
			d = new double[n];
			e = new double[n];

			issymmetric = true;
			for (int j = 0; (j < n) & issymmetric; j++)
			{
				for (int i = 0; (i < n) & issymmetric; i++)
				{
					issymmetric = (A[i][j] == A[j][i]);
				}
			}

			if (issymmetric)
			{
				for (int i = 0; i < n; i++)
				{
					for (int j = 0; j < n; j++)
					{
						V[i][j] = A[i][j];
					}
				}

				// Tridiagonalize.
				Tred2();

				// Diagonalize.
				Tql2();

			}
			else
			{
				H = new double[n][];
				for (int i=0;i<n;i++)
					H[i] = new double[n];
				
				ort = new double[n];

				for (int j = 0; j < n; j++)
				{
					for (int i = 0; i < n; i++)
					{
						H[i][j] = A[i][j];
					}
				}

				// Reduce to Hessenberg form.
				Orthes();

				// Reduce Hessenberg to real Schur form.
				Hqr2();
			}
		}
		/// <summary>
		/// Return the block diagonal eigenvalue matrix
		/// </summary>
		/// <returns>D</returns>
		public Matrix GetD ()
		{
			Matrix X = new Matrix(n,n);
			double[][] D = X.GetArray();
			for (int i = 0; i < n; i++)
			{
				for (int j = 0; j < n; j++)
				{
					D[i][j] = 0.0;
				}
				D[i][i] = d[i];
				if (e[i] > 0)
				{
					D[i][i+1] = e[i];
				}
				else if (e[i] < 0)
				{
					D[i][i-1] = e[i];
				}
			}
			return X;
		}
Esempio n. 12
0
		/// <summary>Multiply matrixData matrix by matrixData scalar, C = s*matrixData</summary>
		/// <param name="s">scalar</param>
		/// <returns>s*matrixData</returns>
		public Matrix Times(double s)
		{
			var X = new Matrix(rowCount,columnCount);
			var C = X.GetArray();
			for (int i = 0; i < rowCount; i++)
			{
				for (int j = 0; j < columnCount; j++)
				{
					C[i][j] = s * matrixData[i][j];
				}
			}
			return X;
		}
Esempio n. 13
0
		/// <summary>Element-by-element left division, C = matrixData.\B</summary>
		/// <param name="B">another matrix</param>
		/// <returns>matrixData.\B</returns>
		public Matrix ArrayLeftDivide(Matrix B)
		{
			CheckMatrixDimensions(B);
			var X = new Matrix(rowCount,columnCount);
			var C = X.GetArray();
			for (int i = 0; i < rowCount; i++)
			{
				for (int j = 0; j < columnCount; j++)
				{
					C[i][j] = B.matrixData[i][j] / matrixData[i][j];
				}
			}
			return X;
		}
Esempio n. 14
0
		/// <summary>Unary minus</summary>
		/// <returns>-matrixData</returns>
		public Matrix Uminus()
		{
			var X = new Matrix(rowCount,columnCount);
			var C = X.GetArray();
			for (int i = 0; i < rowCount; i++)
			{
				for (int j = 0; j < columnCount; j++)
				{
					C[i][j] = -matrixData[i][j];
				}
			}
			return X;
		}
Esempio n. 15
0
 /// <summary>Linear algebraic matrix multiplication, matrixData * B</summary>
 /// <param name="B">another matrix</param>
 /// <returns>Matrix product, matrixData * B</returns>
 /// <exception cref="">ArgumentException Matrix inner dimensions must agree.</exception>
 public Matrix Times(Matrix B)
 {
     if (B.rowCount != columnCount)
     {
         throw new ArgumentException("Matrix inner dimensions must agree.");
     }
     Matrix X = new Matrix(rowCount, B.columnCount);
     double[][] C = X.GetArray();
     double[] Bcolj = new double[columnCount];
     for (int j = 0; j < B.columnCount; j++)
     {
         for (int k = 0; k < columnCount; k++)
         {
             Bcolj[k] = B.matrixData[k][j];
         }
         for (int i = 0; i < rowCount; i++)
         {
             double[] Arowi = matrixData[i];
             double s = 0;
             for (int k = 0; k < columnCount; k++)
             {
                 s += Arowi[k] * Bcolj[k];
             }
             C[i][j] = s;
         }
     }
     return X;
 }
Esempio n. 16
0
        /// <summary>Linear algebraic matrix multiplication, matrixData * B
        /// B being matrixData triangular matrix
        /// <b>Note:</b>
        /// Actually the matrix should be matrixData <b>column oriented, upper triangular
        /// matrix</b> but use the <b>row oriented, lower triangular matrix</b>
        /// instead (transposed), because this is faster due to the easyer array
        /// access.</summary>
        /// <param name="B">another matrix</param>
        /// <returns>Matrix product, matrixData * B</returns>
        /// <exception cref="">ArgumentException Matrix inner dimensions must agree.</exception>
        public Matrix TimesTriangular(Matrix B)
        {
            if (B.rowCount != columnCount)
                throw new ArgumentException("Matrix inner dimensions must agree.");

            Matrix X = new Matrix(rowCount,B.columnCount);
            double[][] c = X.GetArray();
            double[][] b;
            double s = 0;
            double[] Arowi;
            double[] Browj;

            b = B.GetArray();
            ///multiply with each row of matrixData
            for (int i = 0; i < rowCount; i++)
            {
                Arowi = matrixData[i];

                ///for all columns of B
                for (int j = 0; j < B.columnCount; j++)
                {
                    s = 0;
                    Browj = b[j];
                    ///since B being triangular, this loop uses k <= j
                    for (int k = 0; k <= j; k++)
                    {
                        s += Arowi[k] * Browj[k];
                    }
                    c[i][j] = s;
                }
            }
            return X;
        }
		// Return the upper triangular factor
		// @return     R
		public Matrix GetR ()
		{
			Matrix X = new Matrix(n,n);
			double[][] R = X.GetArray();
			for (int i = 0; i < n; i++)
			{
				for (int j = 0; j < n; j++)
				{
					if (i < j)
					{
						R[i][j] = QR[i][j];
					}
					else if (i == j)
					{
						R[i][j] = Rdiag[i];
					}
					else
					{
						R[i][j] = 0.0;
					}
				}
			}
			return X;
		}
Esempio n. 18
0
 /// <summary>Generate identity matrix</summary>
 /// <param name="rows">Number of rows.</param>
 /// <param name="columns">Number of colums.</param>
 /// <returns>An rows-by-columns matrix with ones on the diagonal and zeros elsewhere.</returns>
 public static Matrix Identity(int rows, int columns)
 {
     Matrix matrixData = new Matrix(rows,columns);
     double[][] X = matrixData.GetArray();
     for (int i = 0; i < rows; i++)
     {
         for (int j = 0; j < columns; j++)
         {
             X[i][j] = (i == j ? 1.0 : 0.0);
         }
     }
     return matrixData;
 }
		// Generate and return the (economy-sized) orthogonal factor
		// @return     Q
		public Matrix GetQ ()
		{
			Matrix X = new Matrix(m,n);
			double[][] Q = X.GetArray();
			for (int k = n-1; k >= 0; k--)
			{
				for (int i = 0; i < m; i++)
				{
					Q[i][k] = 0.0;
				}
				Q[k][k] = 1.0;
				for (int j = k; j < n; j++)
				{
					if (QR[k][k] != 0)
					{
						double s = 0.0;
						for (int i = k; i < m; i++)
						{
							s += QR[i][k]*Q[i][j];
						}
						s = -s/QR[k][k];
						for (int i = k; i < m; i++)
						{
							Q[i][j] += s*QR[i][k];
						}
					}
				}
			}
			return X;
		}
Esempio n. 20
0
 /// Make matrixData deep copy of matrixData matrix
 public Matrix Copy()
 {
     Matrix X = new Matrix(rowCount,columnCount);
     double[][] C = X.GetArray();
     for (int i = 0; i < rowCount; i++)
     {
         for (int j = 0; j < columnCount; j++)
         {
             C[i][j] = matrixData[i][j];
         }
     }
     return X;
 }
Esempio n. 21
0
 /// <summary>Get matrixData submatrix.</summary>
 /// <param name="i0">Initial row index</param>
 /// <param name="i1">Final row index</param>
 /// <param name="j0">Initial column index</param>
 /// <param name="j1">Final column index</param>
 /// <returns>matrixData(i0:i1,j0:j1)</returns>
 /// <exception cref="">IndexOutOfRangeException Submatrix indices</exception>
 public Matrix GetMatrix(int i0, int i1, int j0, int j1)
 {
     Matrix X = new Matrix(i1-i0+1,j1-j0+1);
     double[][] B = X.GetArray();
     try {
         for (int i = i0; i <= i1; i++) {
             for (int j = j0; j <= j1; j++) {
                 B[i-i0][j-j0] = matrixData[i][j];
             }
         }
     } catch(Exception) {
         throw new Exception("Submatrix indices");
     }
     return X;
 }
Esempio n. 22
0
 /// <summary>Get matrixData submatrix.</summary>
 /// <param name="r">Array of row indices.</param>
 /// <param name="c">Array of column indices.</param>
 /// <returns>matrixData(r(:),c(:))</returns>
 /// <exception cref="">IndexOutOfRangeException Submatrix indices</exception>
 public Matrix GetMatrix(int[] r, int[] c)
 {
     Matrix X = new Matrix(r.Length,c.Length);
     double[][] B = X.GetArray();
     try {
         for (int i = 0; i < r.Length; i++) {
             for (int j = 0; j < c.Length; j++) {
                 B[i][j] = matrixData[r[i]][c[j]];
             }
         }
     } catch(Exception) {
         throw new Exception("Submatrix indices");
     }
     return X;
 }
Esempio n. 23
0
 /// <summary>Get matrixData submatrix.</summary>
 /// <param name="i0">Initial row index</param>
 /// <param name="i1">Final row index</param>
 /// <param name="c">Array of column indices.</param>
 /// <returns>matrixData(i0:i1,c(:))</returns>
 /// <exception cref="">IndexOutOfRangeException Submatrix indices</exception>
 public Matrix GetMatrix(int i0, int i1, int[] c)
 {
     Matrix X = new Matrix(i1-i0+1,c.Length);
     double[][] B = X.GetArray();
     try {
         for (int i = i0; i <= i1; i++) {
             for (int j = 0; j < c.Length; j++) {
                 B[i-i0][j] = matrixData[i][c[j]];
             }
         }
     } catch(Exception) {
         throw new Exception("Submatrix indices");
     }
     return X;
 }
		// Return upper triangular factor
		// @return     U
		public Matrix GetU ()
		{
			Matrix X = new Matrix(n,n);
			double[][] U = X.GetArray();
			for (int i = 0; i < n; i++)
			{
				for (int j = 0; j < n; j++)
				{
					if (i <= j)
					{
						U[i][j] = LU[i][j];
					}
					else
					{
						U[i][j] = 0.0;
					}
				}
			}
			return X;
		}
		// Return the diagonal matrix of singular values
		// @return     S
		public virtual Matrix GetS ()
		{
			Matrix X = new Matrix(n,n);
			double[][] S = X.GetArray();
			for (int i = 0; i < n; i++)
			{
				for (int j = 0; j < n; j++)
				{
					S[i][j] = 0.0;
				}
				S[i][i] = this.s[i];
			}
			return X;
		}