Esempio n. 1
0
 /// <summary>
 /// Sets to uniform
 /// </summary>
 public void SetToUniform()
 {
     IncludePrior = false;
     InducingDist.SetToUniform();
     pointFunc = null;
     ClearCachedValues();
 }
Esempio n. 2
0
        public static VectorGaussian AAverageConditional(double innerProduct, Vector B, VectorGaussian result)
        {
            // a'*b == ip, therefore:
            // E[a]'*b == ip
            // b'*var(a)*b == 0
            // inv(var(a)) = Inf*bb'
            // E[a] = ip*b/(b'b)
            result.SetToUniform();
            bool nonzero(double x) => x != 0;

            int nonZeroCount = B.CountAll(nonzero);

            if (nonZeroCount == 0)
            {
                return(result);
            }
            else if (nonZeroCount == 1)
            {
                int index = B.FindFirstIndex(nonzero);
                result.Precision[index, index]   = double.PositiveInfinity;
                result.MeanTimesPrecision[index] = innerProduct / B[index];
                return(result);
            }
            else
            {
                throw new NotImplementedException(LowRankNotSupportedMessage);
            }
        }
Esempio n. 3
0
        public static VectorGaussian AAverageConditional([SkipIfUniform] VectorGaussian product, Gaussian b, VectorGaussian result)
        {
            if (!b.IsPointMass)
            {
                throw new ArgumentException("b is not a point mass", nameof(b));
            }
            double bPoint = b.Point;

            if (bPoint == 0)
            {
                result.SetToUniform();
            }
            else if (double.IsPositiveInfinity(bPoint))
            {
                result.Point = result.Point;
                result.Point.SetAllElementsTo(0.0);
            }
            else if (product.IsPointMass)
            {
                result.Point = result.Point;
                result.Point.SetToProduct(product.Point, 1.0 / bPoint);
            }
            else
            {
                // mean = xMean/b
                // variance = xVariance/b^2
                // precision = xPrecision*b^2
                // meanTimesPrecision = xMeanTimesPrecision*b
                result.MeanTimesPrecision.SetToProduct(product.MeanTimesPrecision, bPoint);
                result.Precision.SetToProduct(product.Precision, bPoint * bPoint);
            }
            return(result);
        }
Esempio n. 4
0
 /// <summary>
 /// Predictive coariance at a given list of points
 /// </summary>
 /// <param name="XList">List of inputs</param>
 /// <returns>Predictive covariance</returns>
 public PositiveDefiniteMatrix Covariance(IList <Vector> XList)
 {
     if (IsUniform())
     {
         VectorGaussian temp = new VectorGaussian(XList.Count);
         temp.SetToUniform();
         return(temp.GetVariance());
     }
     else
     {
         PositiveDefiniteMatrix kXX = FixedParameters.Prior.Covariance(XList);
         Matrix kXB = FixedParameters.KernelOf_X_B(XList);
         kXX.SetToDifference(kXX, kXB * Beta * kXB.Transpose());
         return(kXX);
     }
 }
Esempio n. 5
0
 /// <summary>
 /// Mean at a given list of points
 /// </summary>
 /// <param name="XList">List of inputs</param>
 /// <returns>Predictive mean vector</returns>
 public Vector Mean(IList <Vector> XList)
 {
     if (IsUniform())
     {
         VectorGaussian temp = new VectorGaussian(XList.Count);
         temp.SetToUniform();
         return(temp.GetMean());
     }
     else
     {
         int    numPoints = XList.Count;
         Vector result    = Vector.Zero(numPoints);
         for (int i = 0; i < numPoints; i++)
         {
             result[i] = Mean(XList[i]);
         }
         return(result);
     }
 }
Esempio n. 6
0
 /// <summary>
 /// EP message to 'x'.
 /// </summary>
 /// <param name="y">Incoming message from 'y'.</param>
 /// <param name="func">Incoming message from 'func'.</param>
 /// <param name="x">Constant value for 'x'.</param>
 /// <param name="result">Modified to contain the outgoing message.</param>
 /// <returns><paramref name="result"/></returns>
 /// <remarks><para>
 /// The outgoing message is the integral of the factor times incoming messages, over all arguments except 'x'.
 /// The formula is <c>int f(x,x) q(x) dx</c> where <c>x = (y,func)</c>.
 /// </para></remarks>
 public static VectorGaussian XAverageConditional(Gaussian y, SparseGP func, Vector x, VectorGaussian result)
 {
     // Doesn't matter what message we return as we are only supporting a point x
     result.SetToUniform();
     return(result);
 }
Esempio n. 7
0
 /// <summary>
 /// EP message to 'x'.
 /// </summary>
 /// <param name="y">Incoming message from 'y'.</param>
 /// <param name="func">Incoming message from 'func'.</param>
 /// <param name="x">Constant value for 'x'.</param>
 /// <param name="result">Modified to contain the outgoing message.</param>
 /// <returns><paramref name="result"/></returns>
 /// <remarks><para>
 /// The outgoing message is the integral of the factor times incoming messages, over all arguments except 'x'.
 /// The formula is <c>int f(x,x) q(x) dx</c> where <c>x = (y,func)</c>.
 /// </para></remarks>
 public static VectorGaussian XAverageConditional(Gaussian y, SparseGP func, Vector x, VectorGaussian result)
 {
     // Doesn't matter what message we return as we are only supporting a point x
     result.SetToUniform();
     return result;
 }