Esempio n. 1
0
        public SoftmaxCategoricalOneParentNonShared(ModelNodeNonShared node)
        {
            this.node = node;
            Range parentRange = null;

            foreach (var parent in node.parents)
            {
                if (parent.distributionType == DistributionType.Categorical)
                {
                    parentRange = parent.states;
                }
            }
            Bprior = Variable.Array(Variable.Array <VectorGaussian>(parentRange), node.states).Named(node.name + "CoefficientsPrior");
            Bprior.ObservedValue = (node.original.distributions as SoftmaxOneParentCategorical).Bprior;

            B = Variable.Array(Variable.Array <Vector>(parentRange), node.states).Named(node.name + "B");
            B[node.states][parentRange] = Variable <Vector> .Random(Bprior[node.states][parentRange]);

            mPrior = Variable.Array(Variable.Array <Gaussian>(parentRange), node.states).Named(node.name + "mPrior");
            mPrior.ObservedValue = (node.original.distributions as SoftmaxOneParentCategorical).mPrior;

            m = Variable.Array(Variable.Array <double>(parentRange), node.states).Named(node.name + "m");
            m[node.states][parentRange] = Variable <double> .Random(mPrior[node.states][parentRange]);


            Variable.ConstrainEqualRandom(B[node.states.SizeAsInt - 1][parentRange], VectorGaussian.PointMass(Vector.Zero(node.parents.Count - 1)));
            Variable.ConstrainEqualRandom(m[node.states.SizeAsInt - 1][parentRange], Gaussian.PointMass(0));
        }
        private void GaussianProductOp_APointMass(double aMean, Gaussian Product, Gaussian B)
        {
            bool     isProper = Product.IsProper();
            Gaussian A        = Gaussian.PointMass(aMean);
            Gaussian result   = GaussianProductOp.AAverageConditional(Product, A, B);

            Console.WriteLine("{0}: {1}", A, result);
            Gaussian result2 = isProper ? GaussianProductOp_Slow.AAverageConditional(Product, A, B) : result;

            Console.WriteLine("{0}: {1}", A, result2);
            Assert.True(result.MaxDiff(result2) < 1e-6);
            var Amsg = InnerProductOp_PointB.BAverageConditional(Product, DenseVector.FromArray(B.GetMean()), new PositiveDefiniteMatrix(new double[, ] {
                { B.GetVariance() }
            }), VectorGaussian.PointMass(aMean), VectorGaussian.Uniform(1));

            //Console.WriteLine("{0}: {1}", A, Amsg);
            Assert.True(result.MaxDiff(Amsg.GetMarginal(0)) < 1e-6);
            double prevDiff = double.PositiveInfinity;

            for (int i = 3; i < 40; i++)
            {
                double v = System.Math.Pow(0.1, i);
                A       = Gaussian.FromMeanAndVariance(aMean, v);
                result2 = isProper ? GaussianProductOp.AAverageConditional(Product, A, B) : result;
                double diff = result.MaxDiff(result2);
                Console.WriteLine("{0}: {1} diff={2}", A, result2, diff.ToString("g4"));
                //Assert.True(diff <= prevDiff || diff < 1e-6);
                result2 = isProper ? GaussianProductOp_Slow.AAverageConditional(Product, A, B) : result;
                diff    = result.MaxDiff(result2);
                Console.WriteLine("{0}: {1} diff={2}", A, result2, diff.ToString("g4"));
                Assert.True(diff <= prevDiff || diff < 1e-6);
                prevDiff = diff;
            }
        }
        /// <include file='FactorDocs.xml' path='factor_docs/message_op_class[@name="SumVectorGaussianOp"]/message_doc[@name="ArrayAverageConditional{TVectorGaussianList}(Vector, IList{VectorGaussian}, TVectorGaussianList)"]/*'/>
        /// <typeparam name="TVectorGaussianList">A list of <see cref="VectorGaussian"/> distributions which may be set to uniform.</typeparam>
        public static TVectorGaussianList ArrayAverageConditional <TVectorGaussianList>(
            [SkipIfUniform] Vector sum,
            IList <VectorGaussian> array,
            TVectorGaussianList result)
            where TVectorGaussianList : IList <VectorGaussian>, SettableToUniform
        {
            if (sum == null)
            {
                throw new ArgumentNullException(nameof(sum));
            }

            VectorGaussian to_sum = SumAverageConditional(array, new VectorGaussian(sum.Count));

            return(ArrayAverageConditional(VectorGaussian.PointMass(sum), to_sum, array, result));
        }
Esempio n. 4
0
        //Addition by Guy Templeton, get log evidence from learned mixing coeff.
        public double GetLogEvidence()
        {
            Variable <bool> evidence = Variable.Bernoulli(0.5).Named("evidence");
            Range           classes  = new Range(numOfClasses);
            IfBlock         block    = Variable.If(evidence);

            VectorGaussian[] wObserved = trainModel.wPrior.ObservedValue;
            VectorGaussian[] empty     = Util.ArrayInit(numOfClasses, c => (c == 0) ?
                                                        VectorGaussian.PointMass(Vector.Zero(numOfFeatures)) :
                                                        VectorGaussian.FromMeanAndPrecision(Vector.Zero(numOfFeatures), PositiveDefiniteMatrix.Identity(numOfFeatures)));
            block.CloseBlock();
            InferenceEngine engine = new InferenceEngine();

            return(engine.Infer <Bernoulli>(evidence).LogOdds);
        }
Esempio n. 5
0
        public SoftmaxCategoricalNonShared(ModelNodeNonShared node)
        {
            this.node            = node;
            Bprior               = Variable.Array <VectorGaussian>(node.states).Named(node.name + "CoefficientsPrior");
            Bprior.ObservedValue = (node.original.distributions as SoftmaxCategorical).Bprior;
            B = Variable.Array <Vector>(node.states).Named(node.name + "Coefficients");
            // The weight vector for each class.
            B[node.states] = Variable <Vector> .Random(Bprior[node.states]);

            mPrior = Variable.Array <Gaussian>(node.states).Named(node.name + "BiasPrior");
            mPrior.ObservedValue = (node.original.distributions as SoftmaxCategorical).mPrior;
            m = Variable.Array <double>(node.states).Named(node.name + "Bias");
            m[node.states] = Variable <double> .Random(mPrior[node.states]);

            Variable.ConstrainEqualRandom(B[node.states.SizeAsInt - 1], VectorGaussian.PointMass(Vector.Zero(node.parents.Count)));
            Variable.ConstrainEqualRandom(m[node.states.SizeAsInt - 1], Gaussian.PointMass(0));
        }
Esempio n. 6
0
        /// <summary>
        /// Build and run a multinomial regression model.
        /// </summary>
        /// <param name="xObs">An array of vectors of observed inputs.
        /// The length of the array is the number of samples, and the
        /// length of the vectors is the number of input features. </param>
        /// <param name="yObs">An array of array of counts, where the first index is the sample,
        /// and the second index is the class. </param>
        /// <param name="bPost">The returned posterior over the coefficients.</param>
        /// <param name="meanPost">The returned posterior over the means.</param>
        public void MultinomialRegression(Vector[] xObs, int[][] yObs,
                                          out VectorGaussian[] bPost, out Gaussian[] meanPost)
        {
            int C = yObs[0].Length;
            int N = xObs.Length;
            int K = xObs[0].Count;
            var c = new Range(C).Named("c");
            var n = new Range(N).Named("n");

            // model
            var B = Variable.Array <Vector>(c).Named("coefficients");

            B[c] = Variable.VectorGaussianFromMeanAndPrecision(
                Vector.Zero(K), PositiveDefiniteMatrix.Identity(K)).ForEach(c);
            var m = Variable.Array <double>(c).Named("mean");

            m[c] = Variable.GaussianFromMeanAndPrecision(0, 1).ForEach(c);
            Variable.ConstrainEqualRandom(B[C - 1], VectorGaussian.PointMass(Vector.Zero(K)));
            Variable.ConstrainEqualRandom(m[C - 1], Gaussian.PointMass(0));
            var x = Variable.Array <Vector>(n);

            x.ObservedValue = xObs;
            var yData = Variable.Array(Variable.Array <int>(c), n);

            yData.ObservedValue = yObs;
            var trialsCount = Variable.Array <int>(n);

            trialsCount.ObservedValue = yObs.Select(o => o.Sum()).ToArray();
            var g = Variable.Array(Variable.Array <double>(c), n);

            g[n][c] = Variable.InnerProduct(B[c], x[n]) + m[c];
            var p = Variable.Array <Vector>(n);

            p[n] = Variable.Softmax(g[n]);
            using (Variable.ForEach(n))
                yData[n] = Variable.Multinomial(trialsCount[n], p[n]);

            // inference
//			var ie = new InferenceEngine(new VariationalMessagePassing());
            var ie = new InferenceEngine(new ExpectationPropagation());

//              ie.Compiler.GivePriorityTo(typeof(SoftmaxOp_KM11_Sparse));
            bPost    = ie.Infer <VectorGaussian[]>(B);
            meanPost = ie.Infer <Gaussian[]>(m);
        }
 /// <include file='FactorDocs.xml' path='factor_docs/message_op_class[@name="SumVectorGaussianOp"]/message_doc[@name="ArrayAverageLogarithm{TVectorGaussianList}(Vector, IList{VectorGaussian}, TVectorGaussianList)"]/*'/>
 /// <typeparam name="TVectorGaussianList">A list of <see cref="VectorGaussian"/> distributions.</typeparam>
 public static TVectorGaussianList ArrayAverageLogarithm <TVectorGaussianList>(
     Vector sum, [Proper] IList <VectorGaussian> array, TVectorGaussianList result)
     where TVectorGaussianList : IList <VectorGaussian>
 {
     return(ArrayAverageLogarithm(VectorGaussian.PointMass(sum), array, result));
 }
Esempio n. 8
0
        /// <summary>
        /// Build and run a multinomial regression model.
        /// </summary>
        /// <param name="xObs">An array of vectors of observed inputs.
        /// The length of the array is the number of samples, and the
        /// length of the vectors is the number of input features. </param>
        /// <param name="yObs">An array of array of counts, where the first index is the sample,
        /// and the second index is the class. </param>
        /// <param name="weightsPost">The returned posterior over the coefficients.</param>
        /// <param name="biasPost">The returned posterior over the means.</param>
        public double MultinomialRegression(Vector[] xObs, int[][] yObs, out IList <VectorGaussian> weightsPost, out IList <Gaussian> biasPost, bool trackLowerBound = true)
        {
            int             nClasses  = yObs[0].Length;
            int             nPoints   = xObs.Length;
            int             dimension = xObs[0].Count;
            var             c         = new Range(nClasses).Named("c");
            var             n         = new Range(nPoints).Named("n");
            Variable <bool> ev        = null;
            IfBlock         model     = null;

            if (trackLowerBound)
            {
                ev    = Variable.Bernoulli(0.5).Named("evidence");
                model = Variable.If(ev);
            }
            // model
            var weights = Variable.Array <Vector>(c).Named("weights");

            weights[c] = Variable.VectorGaussianFromMeanAndPrecision(Vector.Zero(dimension), PositiveDefiniteMatrix.Identity(dimension)).ForEach(c);
            var bias = Variable.Array <double>(c).Named("bias");

            bias[c] = Variable.GaussianFromMeanAndPrecision(0, 1).ForEach(c);
            Variable.ConstrainEqualRandom(weights[nClasses - 1], VectorGaussian.PointMass(Vector.Zero(dimension)));
            Variable.ConstrainEqualRandom(bias[nClasses - 1], Gaussian.PointMass(0));
            var x = Variable.Array <Vector>(n).Named("x");

            x.ObservedValue = xObs;
            var yData = Variable.Array(Variable.Array <int>(c), n).Named("y");

            yData.ObservedValue = yObs;
            var trialCounts = Variable.Array <int>(n).Named("trialCounts");

            trialCounts.ObservedValue = yObs.Select(o => o.Sum()).ToArray();
            var g = Variable.Array(Variable.Array <double>(c), n).Named("g");

            g[n][c] = Variable.InnerProduct(weights[c], x[n]) + bias[c];
            var p = Variable.Array <Vector>(n).Named("p");

            p[n] = Variable.Softmax(g[n]);
            using (Variable.ForEach(n))
                yData[n] = Variable.Multinomial(trialCounts[n], p[n]);
            if (trackLowerBound)
            {
                model.CloseBlock();
            }
            // inference
            var ie = new InferenceEngine(new VariationalMessagePassing());

            //ie.Compiler.GivePriorityTo(typeof(SaulJordanSoftmaxOp_LBFGS));
            //ie.Compiler.GivePriorityTo(typeof(ProductOfLogisticsSoftmaxOp));
            //ie.Compiler.GivePriorityTo(typeof(SaulJordanSoftmaxOp_NCVMP));
            //ie.Compiler.GivePriorityTo(typeof(SoftmaxOp_Bouchard));
            //ie.Compiler.GivePriorityTo(typeof(Blei06SoftmaxOp_NCVMP));
            ie.OptimiseForVariables = (trackLowerBound ? new IVariable[] { weights, bias, ev } : new IVariable[] { weights, bias });
            if (trackLowerBound)
            {
                ie.ShowProgress = false;
            }
            for (int iter = 1; iter <= 50; iter++)
            {
                ie.NumberOfIterations = iter;
                if (trackLowerBound)
                {
                    Console.WriteLine(ie.Infer <Bernoulli>(ev).LogOdds);
                }
            }
            weightsPost = ie.Infer <IList <VectorGaussian> >(weights);
            biasPost    = ie.Infer <IList <Gaussian> >(bias);
            return(trackLowerBound ? ie.Infer <Bernoulli>(ev).LogOdds : 0.0);
        }
        public int MulticlassRegression(Vector[] xObs, int[] yObs, int C, out VectorGaussian[] bPost, out Gaussian[] meanPost, out double lowerBound, object softmaxOperator,
                                        bool trackLowerBound = false)
        {
            int             N     = xObs.Length;
            int             K     = xObs[0].Count;
            var             c     = new Range(C).Named("c");
            var             n     = new Range(N).Named("n");
            Variable <bool> ev    = null;
            IfBlock         model = null;

            if (trackLowerBound)
            {
                ev    = Variable.Bernoulli(0.5).Named("evidence");
                model = Variable.If(ev);
            }
            // model
            var B = Variable.Array <Vector>(c).Named("coefficients");

            B[c] = Variable.VectorGaussianFromMeanAndPrecision(Vector.Zero(K), PositiveDefiniteMatrix.Identity(K)).ForEach(c);
            var m = Variable.Array <double>(c).Named("mean");

            m[c] = Variable.GaussianFromMeanAndPrecision(0, 1).ForEach(c);
            Variable.ConstrainEqualRandom(B[C - 1], VectorGaussian.PointMass(Vector.Zero(K)));
            Variable.ConstrainEqualRandom(m[C - 1], Gaussian.PointMass(0));
            var x = Variable.Array <Vector>(n);

            x.ObservedValue = xObs;
            var yData = Variable.Array <int>(n);

            yData.ObservedValue = yObs;
            var g = Variable.Array(Variable.Array <double>(c), n);

            g[n][c] = Variable.InnerProduct(B[c], x[n]) + m[c];
            var p = Variable.Array <Vector>(n);

            p[n] = Variable.Softmax(g[n]);
            using (Variable.ForEach(n))
                yData[n] = Variable.Discrete(p[n]);
            if (trackLowerBound)
            {
                model.CloseBlock();
            }
            // inference
            var ie = new InferenceEngine(new VariationalMessagePassing());

            ie.Compiler.GivePriorityTo(softmaxOperator);
            var ca        = ie.GetCompiledInferenceAlgorithm(ev, B, m);
            var start     = DateTime.Now;
            var initBound = double.NegativeInfinity;
            int i         = 0;

            lowerBound = 0;
            for (i = 1; i <= 50; i++)
            {
                ca.Update(1);
                lowerBound = ca.Marginal <Bernoulli>(ev.NameInGeneratedCode).LogOdds;
                Console.WriteLine(i + "," + lowerBound + "," + (DateTime.Now - start).TotalMilliseconds);
                if (System.Math.Abs(initBound - lowerBound) < 1e-2)
                {
                    break;
                }
                initBound = lowerBound;
                start     = DateTime.Now;
            }

            bPost    = ca.Marginal <VectorGaussian[]>(B.NameInGeneratedCode);
            meanPost = ca.Marginal <Gaussian[]>(m.NameInGeneratedCode);
            return(i);
        }
Esempio n. 10
0
 private VectorGaussian[] InitializePrior(int numClasses, int numFeatures)
 {
     return(Util.ArrayInit(numClasses, c => (c == 0) ?
                           VectorGaussian.PointMass(Vector.Zero(numFeatures)) :
                           VectorGaussian.FromMeanAndPrecision(Vector.Zero(numFeatures), PositiveDefiniteMatrix.Identity(numFeatures))));
 }
Esempio n. 11
0
        public static void Test2()
        {
            double[] observed = new double[] { 21, 27, 41, 35, 47, 54, 59, 19, 19, 16, 23, 35, 19, 30, 31, 37, 66, 20, 27, 25, 35, 28, 62, 31,
                                               49, 40, 31, 14, 20, 37, 38, 25, 31, 39 };

            double[] pathObserved = new double[] { 22, 24, 32, 50, 62, 73, 69, 19, 13, 8, 23, 27, 32, 22,
                                                   25, 39, 39, 17, 22, 24, 26, 26, 53, 26, 36, 38, 34, 19, 20, 45, 37, 21, 45, 41 };

            int[] classes = new int[] { 2, 2, 3, 5, 6, 7, 6, 1, 1, 0, 2, 2, 3, 2,
                                        2, 3, 3, 1, 2, 2, 2, 2, 5, 2, 3, 3, 3, 1, 2, 4, 3, 2, 4, 4 };
            int[][] classesCounts = new int[classes.Length][];
            for (int ii = 0; ii < classes.Length; ii++)
            {
                classesCounts[ii] = new int[8];
                classesCounts[ii][classes[ii]] = 1;
            }

            Vector[] xdata = new Vector[observed.Length];
            for (int i = 0; i < xdata.Length; i++)
            {
                xdata[i] = Vector.FromArray(observed[i], pathObserved[i]);
            }

            Range range = new Range(observed.Length);


            Variable <Gaussian> meanPrior = Gaussian.FromMeanAndVariance(0, 100);
            Variable <double>   roomsMean = Variable <double> .Random(meanPrior).Named("room Mean");

            Variable <double>      roomsStd    = Variable.GammaFromMeanAndVariance(2, 2).Named("room sigma");
            VariableArray <double> observedVar = Variable.Array <double>(range).Named("observedVar");
            Variable <double>      roomGauss   = Variable.GaussianFromMeanAndPrecision(roomsMean, roomsStd).Named("roomGauss");

            observedVar[range] = roomGauss.ForEach(range);


            Variable <double>      pathsMean    = Variable.GaussianFromMeanAndVariance(0, 200).Named("path Mean");
            Variable <double>      pathsStd     = Variable.GammaFromMeanAndVariance(1, 1.5).Named("path sigma");
            VariableArray <double> observedPath = Variable.Array <double>(range).Named("observedPath");

            observedPath[range] = observedVar[range] + (Variable.GaussianFromMeanAndPrecision(pathsMean, pathsStd)).ForEach(range);


            observedVar.ObservedValue  = observed;
            observedPath.ObservedValue = pathObserved;
            int C = 8;
            var c = new Range(C);
            int K = 2;
            var B = Variable.Array <Vector>(c).Named("coefficients");

            B[c] = Variable.VectorGaussianFromMeanAndPrecision(
                Vector.Zero(K), PositiveDefiniteMatrix.Identity(K)).ForEach(c);
            var m = Variable.Array <double>(c).Named("mean");

            m[c] = Variable.GaussianFromMeanAndPrecision(0, 1).ForEach(c);
            Variable.ConstrainEqualRandom(B[C - 1], VectorGaussian.PointMass(Vector.Zero(K)));
            Variable.ConstrainEqualRandom(m[C - 1], Gaussian.PointMass(0));
            var x = Variable.Array <Vector>(range).Named("x");

            x.ObservedValue = xdata;
            //var x = Variable.Array(Variable.Array<double>(c), range).Named("x");
            //  Variable.ConstrainEqual(x[range][0], observedVar[range]);
            //  Variable.ConstrainEqual(x[range][1], observedPath[range]);
            // x[range][1] = observedPath[range];
            //    var x = xTemp;// Variable.Vector(xTemp[range]);
            var yData = Variable.Array(Variable.Array <int>(c), range).Named("y");

            yData.ObservedValue = classesCounts;
            var trialsCount = Variable.Array <int>(range).Named("trialsCount");

            trialsCount.ObservedValue = classesCounts.Select(o => o.Sum()).ToArray();
            var g = Variable.Array(Variable.Array <double>(c), range).Named("g");

            g[range][c] = Variable.InnerProduct(B[c], (x[range])) + m[c];
            var p = Variable.Array <Vector>(range).Named("p");

            p[range] = Variable.Softmax(g[range]);

            using (Variable.ForEach(range))
                yData[range] = Variable.Multinomial(trialsCount[range], p[range]);

            // inference
            //  var ie = new InferenceEngine(new VariationalMessagePassing());



            InferenceEngine Engine       = new InferenceEngine(new VariationalMessagePassing());
            Gaussian        posterior    = Engine.Infer <Gaussian>(roomsMean);
            Gamma           posteriorStd = Engine.Infer <Gamma>(roomsStd);

            Gaussian posteriorPath    = Engine.Infer <Gaussian>(pathsMean);
            Gamma    posteriorStdPath = Engine.Infer <Gamma>(pathsStd);

            Console.WriteLine(posterior + " " + posteriorStd);
            Console.WriteLine(posteriorPath + " " + posteriorStdPath);
            var bPost    = Engine.Infer <VectorGaussian[]>(B);
            var meanPost = Engine.Infer <Gaussian[]>(m);

            for (int i = 0; i < C; i++)
            {
                Console.WriteLine("C " + bPost[i].GetMean());
                Console.WriteLine("m " + meanPost[i].GetMean());
            }

            for (int ii = 0; ii < classes.Length; ii++)
            {
                for (int i = 0; i < C; i++)
                {
                    Console.WriteLine("C " + i + " " + (meanPost[i].GetMean() + bPost[i].GetMean()[0] * observed[ii] + bPost[i].GetMean()[1] * pathObserved[ii]) + " - " + classes[ii]);
                }
            }
            //  Engine.Compiler.GivePriorityTo(typeof(SaulJordanSoftmaxOp_NCVMP));
        }