Esempio n. 1
0
        /// <summary>
        /// Create network for forward sequence-to-sequence
        /// Sparse feature size = source sparse feature size + target sparse feature size
        /// Dense feature size: For first layer, (source dense feature size + target dense), for other layers, (source dense feature size + previous hidden layer size)
        /// </summary>
        /// <param name="hiddenLayersConfig"></param>
        /// <param name="outputLayerConfig"></param>
        /// <param name="TrainingSet"></param>
        /// <param name="featurizer"></param>
        public override void CreateNetwork(List <LayerConfig> hiddenLayersConfig, LayerConfig outputLayerConfig, DataSet <T> TrainingSet, Config featurizer)
        {
            var srcDenseFeatureSize = featurizer.Seq2SeqAutoEncoder.GetTopHiddenLayerSize() * 2;
            var sparseFeatureSize   = TrainingSet.SparseFeatureSize;

            sparseFeatureSize += featurizer.Seq2SeqAutoEncoder.Config.SparseFeatureSize;
            Logger.WriteLine("Sparse Feature Format: [{0}][{1}] = {2}", TrainingSet.SparseFeatureSize, featurizer.Seq2SeqAutoEncoder.Config.SparseFeatureSize, sparseFeatureSize);

            HiddenLayerList = CreateLayers(hiddenLayersConfig);

            for (var i = 0; i < HiddenLayerList.Count; i++)
            {
                SimpleLayer layer = HiddenLayerList[i];
                layer.InitializeWeights(sparseFeatureSize, i == 0 ? (srcDenseFeatureSize + TrainingSet.DenseFeatureSize) : (srcDenseFeatureSize + HiddenLayerList[i - 1].LayerSize));
                layer.SetRunningMode(RunningMode.Training);

                Logger.WriteLine($"Create hidden layer {i}: size = {layer.LayerSize}, sparse feature size = {layer.SparseFeatureSize}, dense feature size = {layer.DenseFeatureSize}");
            }

            outputLayerConfig.LayerSize = TrainingSet.TagSize;
            OutputLayer = CreateOutputLayer(outputLayerConfig, 0, (srcDenseFeatureSize + HiddenLayerList[HiddenLayerList.Count - 1].LayerSize));
            OutputLayer.SetRunningMode(RunningMode.Training);

            Logger.WriteLine($"Create a Forward recurrent neural sequence-to-sequence network with {HiddenLayerList.Count} hidden layers");
        }
Esempio n. 2
0
        public override void CreateNetwork(List <LayerConfig> hiddenLayersConfig, LayerConfig outputLayerConfig, DataSet <T> TrainingSet, Config featurizer)
        {
            var forwardHiddenLayers  = CreateLayers(hiddenLayersConfig);
            var backwardHiddenLayers = CreateLayers(hiddenLayersConfig);

            for (var i = 0; i < hiddenLayersConfig.Count; i++)
            {
                SimpleLayer forwardLayer  = forwardHiddenLayers[i];
                SimpleLayer backwardLayer = backwardHiddenLayers[i];

                var denseFeatureSize = TrainingSet.DenseFeatureSize;
                if (i > 0)
                {
                    denseFeatureSize = forwardHiddenLayers[i - 1].LayerSize * 2;
                }

                forwardLayer.InitializeWeights(TrainingSet.SparseFeatureSize, denseFeatureSize);
                backwardLayer.InitializeWeights(TrainingSet.SparseFeatureSize, denseFeatureSize);

                forwardLayer.SetRunningMode(RunningMode.Training);
                backwardLayer.SetRunningMode(RunningMode.Training);

                Logger.WriteLine($"Create hidden layer {i}: size = {forwardLayer.LayerSize}, sparse feature size = {forwardLayer.SparseFeatureSize}, dense feature size = {forwardLayer.DenseFeatureSize}");
            }

            outputLayerConfig.LayerSize = TrainingSet.TagSize;
            SimpleLayer outputLayer = CreateOutputLayer(outputLayerConfig, TrainingSet.SparseFeatureSize, forwardHiddenLayers[forwardHiddenLayers.Count - 1].LayerSize * 2);

            outputLayer.SetRunningMode(RunningMode.Training);

            Logger.WriteLine($"Create a bi-directional recurrent neural network with {forwardHiddenLayers.Count} hidden layers. Forward and backward layers are concatnated.");
            InitCache(forwardHiddenLayers, backwardHiddenLayers, outputLayer);
        }
Esempio n. 3
0
        protected SimpleLayer CreateOutputLayer(LayerConfig outputLayerConfig, int sparseFeatureSize, int denseFeatureSize)
        {
            SimpleLayer outputLayer = null;

            switch (outputLayerConfig.LayerType)
            {
            case LayerType.SampledSoftmax:
                Logger.WriteLine("Create sampled softmax layer as output layer");
                outputLayer = new SampledSoftmaxLayer(outputLayerConfig as SampledSoftmaxLayerConfig);
                outputLayer.InitializeWeights(0, denseFeatureSize);
                break;

            case LayerType.Softmax:
                Logger.WriteLine("Create softmax layer as output layer.");
                outputLayer = new SoftmaxLayer(outputLayerConfig as SoftmaxLayerConfig);
                outputLayer.InitializeWeights(sparseFeatureSize, denseFeatureSize);
                break;

            case LayerType.Simple:
                Logger.WriteLine("Create simple layer as output layer.");
                outputLayer = new SimpleLayer(outputLayerConfig as SimpleLayerConfig);
                outputLayer.InitializeWeights(sparseFeatureSize, denseFeatureSize);
                break;
            }
            outputLayer.LabelShortList = new List <int>();

            return(outputLayer);
        }
Esempio n. 4
0
        public override void CreateNetwork(List <LayerConfig> hiddenLayersConfig, LayerConfig outputLayerConfig, DataSet <T> TrainingSet, Config featurizer)
        {
            HiddenLayerList = CreateLayers(hiddenLayersConfig);
            for (var i = 0; i < HiddenLayerList.Count; i++)
            {
                SimpleLayer layer = HiddenLayerList[i];
                layer.InitializeWeights(TrainingSet.SparseFeatureSize, i == 0 ? TrainingSet.DenseFeatureSize : HiddenLayerList[i - 1].LayerSize);
                layer.SetRunningMode(RunningMode.Training);

                Logger.WriteLine($"Create hidden layer {i}: size = {layer.LayerSize}, sparse feature size = {layer.SparseFeatureSize}, dense feature size = {layer.DenseFeatureSize}");
            }

            outputLayerConfig.LayerSize = TrainingSet.TagSize;
            OutputLayer = CreateOutputLayer(outputLayerConfig, TrainingSet.SparseFeatureSize, HiddenLayerList[HiddenLayerList.Count - 1].LayerSize);
            OutputLayer.SetRunningMode(RunningMode.Training);

            Logger.WriteLine($"Create a Forward recurrent neural network with {HiddenLayerList.Count} hidden layers");
        }