Esempio n. 1
0
    public void Test_S2ShapeIndexRegion_GetCapBound()
    {
        var id = S2CellId.FromDebugString("3/0123012301230123012301230123");

        // Add a polygon that is slightly smaller than the cell being tested.
        MutableS2ShapeIndex index = new();

        index.Add(NewPaddedCell(id, -kPadding));
        S2Cap cell_bound  = new S2Cell(id).GetCapBound();
        S2Cap index_bound = index.MakeS2ShapeIndexRegion().GetCapBound();

        Assert.True(index_bound.Contains(cell_bound));

        // Note that S2CellUnion.GetCapBound returns a slightly larger bound than
        // S2Cell.GetBound even when the cell union consists of a single S2CellId.
        Assert.True(index_bound.RadiusAngle() <= 1.00001 * cell_bound.RadiusAngle());
    }
Esempio n. 2
0
        static void TestSubdivide(S2Cell cell)
        {
            GatherStats(cell);
            if (cell.IsLeaf())
            {
                return;
            }

            var children = new S2Cell[4];

            Assert.True(cell.Subdivide(children));
            S2CellId child_id     = cell.Id.ChildBegin();
            double   exact_area   = 0;
            double   approx_area  = 0;
            double   average_area = 0;

            for (int i = 0; i < 4; ++i, child_id = child_id.Next())
            {
                exact_area   += children[i].ExactArea();
                approx_area  += children[i].ApproxArea();
                average_area += children[i].AverageArea();

                // Check that the child geometry is consistent with its cell ID.
                Assert.Equal(child_id, children[i].Id);
                Assert.True(S2.ApproxEquals(children[i].Center(), child_id.ToPoint()));
                S2Cell direct = new(child_id);
                Assert.Equal(direct.Face, children[i].Face);
                Assert.Equal(direct.Level, children[i].Level);
                Assert.Equal(direct.Orientation, children[i].Orientation);
                Assert.Equal(direct.CenterRaw(), children[i].CenterRaw());
                for (int k = 0; k < 4; ++k)
                {
                    Assert.Equal(direct.VertexRaw(k), children[i].VertexRaw(k));
                    Assert.Equal(direct.EdgeRaw(k), children[i].EdgeRaw(k));
                }

                // Test Contains() and MayIntersect().
                Assert.True(cell.Contains(children[i]));
                Assert.True(cell.MayIntersect(children[i]));
                Assert.False(children[i].Contains(cell));
                Assert.True(cell.Contains(children[i].CenterRaw()));
                for (int j = 0; j < 4; ++j)
                {
                    Assert.True(cell.Contains(children[i].VertexRaw(j)));
                    if (j != i)
                    {
                        Assert.False(children[i].Contains(children[j].CenterRaw()));
                        Assert.False(children[i].MayIntersect(children[j]));
                    }
                }

                // Test GetCapBound and GetRectBound.
                S2Cap        parent_cap  = cell.GetCapBound();
                S2LatLngRect parent_rect = cell.GetRectBound();
                if (cell.Contains(new S2Point(0, 0, 1)) || cell.Contains(new S2Point(0, 0, -1)))
                {
                    Assert.True(parent_rect.Lng.IsFull());
                }
                S2Cap        child_cap  = children[i].GetCapBound();
                S2LatLngRect child_rect = children[i].GetRectBound();
                Assert.True(child_cap.Contains(children[i].Center()));
                Assert.True(child_rect.Contains(children[i].CenterRaw()));
                Assert.True(parent_cap.Contains(children[i].Center()));
                Assert.True(parent_rect.Contains(children[i].CenterRaw()));
                for (int j = 0; j < 4; ++j)
                {
                    Assert.True(child_cap.Contains(children[i].Vertex(j)));
                    Assert.True(child_rect.Contains(children[i].Vertex(j)));
                    Assert.True(child_rect.Contains(children[i].VertexRaw(j)));
                    Assert.True(parent_cap.Contains(children[i].Vertex(j)));
                    Assert.True(parent_rect.Contains(children[i].Vertex(j)));
                    Assert.True(parent_rect.Contains(children[i].VertexRaw(j)));
                    if (j != i)
                    {
                        // The bounding caps and rectangles should be tight enough so that
                        // they exclude at least two vertices of each adjacent cell.
                        int cap_count  = 0;
                        int rect_count = 0;
                        for (int k = 0; k < 4; ++k)
                        {
                            if (child_cap.Contains(children[j].Vertex(k)))
                            {
                                ++cap_count;
                            }
                            if (child_rect.Contains(children[j].VertexRaw(k)))
                            {
                                ++rect_count;
                            }
                        }
                        Assert.True(cap_count <= 2);
                        if (child_rect.LatLo().Radians > -S2.M_PI_2 &&
                            child_rect.LatHi().Radians < S2.M_PI_2)
                        {
                            // Bounding rectangles may be too large at the poles because the
                            // pole itself has an arbitrary fixed longitude.
                            Assert.True(rect_count <= 2);
                        }
                    }
                }

                // Check all children for the first few levels, and then sample randomly.
                // We also always subdivide the cells containing a few chosen points so
                // that we have a better chance of sampling the minimum and maximum metric
                // values.  kMaxSizeUV is the absolute value of the u- and v-coordinate
                // where the cell size at a given level is maximal.
                double    kMaxSizeUV = 0.3964182625366691;
                R2Point[] special_uv =
                {
                    new R2Point(S2.DoubleEpsilon, S2.DoubleEpsilon), // Face center
                    new R2Point(S2.DoubleEpsilon, 1),                // Edge midpoint
                    new R2Point(1, 1),                               // Face corner
                    new R2Point(kMaxSizeUV, kMaxSizeUV),             // Largest cell area
                    new R2Point(S2.DoubleEpsilon, kMaxSizeUV),       // Longest edge/diagonal
                };
                bool force_subdivide = false;
                foreach (R2Point uv in special_uv)
                {
                    if (children[i].BoundUV.Contains(uv))
                    {
                        force_subdivide = true;
                    }
                }

                var debugFlag =
#if s2debug
                    true;
#else
                    false;
#endif

                if (force_subdivide ||
                    cell.Level < (debugFlag ? 5 : 6) ||
                    S2Testing.Random.OneIn(debugFlag ? 5 : 4))
                {
                    TestSubdivide(children[i]);
                }
            }

            // Check sum of child areas equals parent area.
            //
            // For ExactArea(), the best relative error we can expect is about 1e-6
            // because the precision of the unit vector coordinates is only about 1e-15
            // and the edge length of a leaf cell is about 1e-9.
            //
            // For ApproxArea(), the areas are accurate to within a few percent.
            //
            // For AverageArea(), the areas themselves are not very accurate, but
            // the average area of a parent is exactly 4 times the area of a child.

            Assert.True(Math.Abs(Math.Log(exact_area / cell.ExactArea())) <= Math.Abs(Math.Log((1 + 1e-6))));
            Assert.True(Math.Abs(Math.Log((approx_area / cell.ApproxArea()))) <= Math.Abs(Math.Log((1.03))));
            Assert.True(Math.Abs(Math.Log((average_area / cell.AverageArea()))) <= Math.Abs(Math.Log((1 + 1e-15))));
        }
Esempio n. 3
0
        public void Test_S2Cap_Basic()
        {
            // Test basic properties of empty and full caps.
            S2Cap empty = S2Cap.Empty;
            S2Cap full  = S2Cap.Full;

            Assert.True(empty.IsValid());
            Assert.True(empty.IsEmpty());
            Assert.True(empty.Complement().IsFull());
            Assert.True(full.IsValid());
            Assert.True(full.IsFull());
            Assert.True(full.Complement().IsEmpty());
            Assert.Equal(2, full.Height());
            Assert2.DoubleEqual(180.0, full.Radius.Degrees());

            // Test ==/!=.
            Assert.Equal(full, full);
            Assert.Equal(empty, empty);
            Assert.NotEqual(full, empty);

            // Test the S1Angle constructor using out-of-range arguments.
            Assert.True(new S2Cap(new S2Point(1, 0, 0), S1Angle.FromRadians(-20)).IsEmpty());
            Assert.True(new S2Cap(new S2Point(1, 0, 0), S1Angle.FromRadians(5)).IsFull());
            Assert.True(new S2Cap(new S2Point(1, 0, 0), S1Angle.Infinity).IsFull());

            // Check that the default S2Cap is identical to Empty().
            var default_empty = S2Cap.Empty;

            Assert.True(default_empty.IsValid());
            Assert.True(default_empty.IsEmpty());
            Assert.Equal(empty.Center, default_empty.Center);
            Assert.Equal(empty.Height(), default_empty.Height());

            // Containment and intersection of empty and full caps.
            Assert.True(empty.Contains(empty));
            Assert.True(full.Contains(empty));
            Assert.True(full.Contains(full));
            Assert.False(empty.InteriorIntersects(empty));
            Assert.True(full.InteriorIntersects(full));
            Assert.False(full.InteriorIntersects(empty));

            // Singleton cap containing the x-axis.
            S2Cap xaxis = S2Cap.FromPoint(new S2Point(1, 0, 0));

            Assert.True(xaxis.Contains(new S2Point(1, 0, 0)));
            Assert.False(xaxis.Contains(new S2Point(1, 1e-20, 0)));
            Assert.Equal(0, xaxis.Radius.Radians());

            // Singleton cap containing the y-axis.
            S2Cap yaxis = S2Cap.FromPoint(new S2Point(0, 1, 0));

            Assert.False(yaxis.Contains(xaxis.Center));
            Assert.Equal(0, xaxis.Height());

            // Check that the complement of a singleton cap is the full cap.
            S2Cap xcomp = xaxis.Complement();

            Assert.True(xcomp.IsValid());
            Assert.True(xcomp.IsFull());
            Assert.True(xcomp.Contains(xaxis.Center));

            // Check that the complement of the complement is *not* the original.
            Assert.True(xcomp.Complement().IsValid());
            Assert.True(xcomp.Complement().IsEmpty());
            Assert.False(xcomp.Complement().Contains(xaxis.Center));

            // Check that very small caps can be represented accurately.
            // Here "kTinyRad" is small enough that unit vectors perturbed by this
            // amount along a tangent do not need to be renormalized.
            S2Cap tiny    = new(new S2Point(1, 2, 3).Normalize(), S1Angle.FromRadians(kTinyRad));
            var   tangent = tiny.Center.CrossProd(new S2Point(3, 2, 1)).Normalize();

            Assert.True(tiny.Contains(tiny.Center + 0.99 * kTinyRad * tangent));
            Assert.False(tiny.Contains(tiny.Center + 1.01 * kTinyRad * tangent));

            // Basic tests on a hemispherical cap.
            S2Cap hemi = S2Cap.FromCenterHeight(new S2Point(1, 0, 1).Normalize(), 1);

            Assert.Equal(-hemi.Center, hemi.Complement().Center);
            Assert.Equal(1, hemi.Complement().Height());
            Assert.True(hemi.Contains(new S2Point(1, 0, 0)));
            Assert.False(hemi.Complement().Contains(new S2Point(1, 0, 0)));
            Assert.True(hemi.Contains(new S2Point(1, 0, -(1 - kEps)).Normalize()));
            Assert.False(hemi.InteriorContains(new S2Point(1, 0, -(1 + kEps)).Normalize()));

            // A concave cap.  Note that the error bounds for point containment tests
            // increase with the cap angle, so we need to use a larger error bound
            // here.  (It would be painful to do this everywhere, but this at least
            // gives an example of how to compute the maximum error.)
            S2Point      center    = GetLatLngPoint(80, 10);
            S1ChordAngle radius    = new(S1Angle.FromDegrees(150));
            double       max_error =
                radius.GetS2PointConstructorMaxError() +
                radius.S1AngleConstructorMaxError +
                3 * S2.DoubleEpsilon;  // GetLatLngPoint() error
            S2Cap concave     = new(center, radius);
            S2Cap concave_min = new(center, radius.PlusError(-max_error));
            S2Cap concave_max = new(center, radius.PlusError(max_error));

            Assert.True(concave_max.Contains(GetLatLngPoint(-70, 10)));
            Assert.False(concave_min.Contains(GetLatLngPoint(-70, 10)));
            Assert.True(concave_max.Contains(GetLatLngPoint(-50, -170)));
            Assert.False(concave_min.Contains(GetLatLngPoint(-50, -170)));

            // Cap containment tests.
            Assert.False(empty.Contains(xaxis));
            Assert.False(empty.InteriorIntersects(xaxis));
            Assert.True(full.Contains(xaxis));
            Assert.True(full.InteriorIntersects(xaxis));
            Assert.False(xaxis.Contains(full));
            Assert.False(xaxis.InteriorIntersects(full));
            Assert.True(xaxis.Contains(xaxis));
            Assert.False(xaxis.InteriorIntersects(xaxis));
            Assert.True(xaxis.Contains(empty));
            Assert.False(xaxis.InteriorIntersects(empty));
            Assert.True(hemi.Contains(tiny));
            Assert.True(hemi.Contains(new S2Cap(new S2Point(1, 0, 0), S1Angle.FromRadians(S2.M_PI_4 - kEps))));
            Assert.False(hemi.Contains(new S2Cap(new S2Point(1, 0, 0), S1Angle.FromRadians(S2.M_PI_4 + kEps))));
            Assert.True(concave.Contains(hemi));
            Assert.True(concave.InteriorIntersects(hemi.Complement()));
            Assert.False(concave.Contains(S2Cap.FromCenterHeight(-concave.Center, 0.1)));
        }