public void Test_S2ShapeIndexRegion_GetCapBound() { var id = S2CellId.FromDebugString("3/0123012301230123012301230123"); // Add a polygon that is slightly smaller than the cell being tested. MutableS2ShapeIndex index = new(); index.Add(NewPaddedCell(id, -kPadding)); S2Cap cell_bound = new S2Cell(id).GetCapBound(); S2Cap index_bound = index.MakeS2ShapeIndexRegion().GetCapBound(); Assert.True(index_bound.Contains(cell_bound)); // Note that S2CellUnion.GetCapBound returns a slightly larger bound than // S2Cell.GetBound even when the cell union consists of a single S2CellId. Assert.True(index_bound.RadiusAngle() <= 1.00001 * cell_bound.RadiusAngle()); }
static void TestSubdivide(S2Cell cell) { GatherStats(cell); if (cell.IsLeaf()) { return; } var children = new S2Cell[4]; Assert.True(cell.Subdivide(children)); S2CellId child_id = cell.Id.ChildBegin(); double exact_area = 0; double approx_area = 0; double average_area = 0; for (int i = 0; i < 4; ++i, child_id = child_id.Next()) { exact_area += children[i].ExactArea(); approx_area += children[i].ApproxArea(); average_area += children[i].AverageArea(); // Check that the child geometry is consistent with its cell ID. Assert.Equal(child_id, children[i].Id); Assert.True(S2.ApproxEquals(children[i].Center(), child_id.ToPoint())); S2Cell direct = new(child_id); Assert.Equal(direct.Face, children[i].Face); Assert.Equal(direct.Level, children[i].Level); Assert.Equal(direct.Orientation, children[i].Orientation); Assert.Equal(direct.CenterRaw(), children[i].CenterRaw()); for (int k = 0; k < 4; ++k) { Assert.Equal(direct.VertexRaw(k), children[i].VertexRaw(k)); Assert.Equal(direct.EdgeRaw(k), children[i].EdgeRaw(k)); } // Test Contains() and MayIntersect(). Assert.True(cell.Contains(children[i])); Assert.True(cell.MayIntersect(children[i])); Assert.False(children[i].Contains(cell)); Assert.True(cell.Contains(children[i].CenterRaw())); for (int j = 0; j < 4; ++j) { Assert.True(cell.Contains(children[i].VertexRaw(j))); if (j != i) { Assert.False(children[i].Contains(children[j].CenterRaw())); Assert.False(children[i].MayIntersect(children[j])); } } // Test GetCapBound and GetRectBound. S2Cap parent_cap = cell.GetCapBound(); S2LatLngRect parent_rect = cell.GetRectBound(); if (cell.Contains(new S2Point(0, 0, 1)) || cell.Contains(new S2Point(0, 0, -1))) { Assert.True(parent_rect.Lng.IsFull()); } S2Cap child_cap = children[i].GetCapBound(); S2LatLngRect child_rect = children[i].GetRectBound(); Assert.True(child_cap.Contains(children[i].Center())); Assert.True(child_rect.Contains(children[i].CenterRaw())); Assert.True(parent_cap.Contains(children[i].Center())); Assert.True(parent_rect.Contains(children[i].CenterRaw())); for (int j = 0; j < 4; ++j) { Assert.True(child_cap.Contains(children[i].Vertex(j))); Assert.True(child_rect.Contains(children[i].Vertex(j))); Assert.True(child_rect.Contains(children[i].VertexRaw(j))); Assert.True(parent_cap.Contains(children[i].Vertex(j))); Assert.True(parent_rect.Contains(children[i].Vertex(j))); Assert.True(parent_rect.Contains(children[i].VertexRaw(j))); if (j != i) { // The bounding caps and rectangles should be tight enough so that // they exclude at least two vertices of each adjacent cell. int cap_count = 0; int rect_count = 0; for (int k = 0; k < 4; ++k) { if (child_cap.Contains(children[j].Vertex(k))) { ++cap_count; } if (child_rect.Contains(children[j].VertexRaw(k))) { ++rect_count; } } Assert.True(cap_count <= 2); if (child_rect.LatLo().Radians > -S2.M_PI_2 && child_rect.LatHi().Radians < S2.M_PI_2) { // Bounding rectangles may be too large at the poles because the // pole itself has an arbitrary fixed longitude. Assert.True(rect_count <= 2); } } } // Check all children for the first few levels, and then sample randomly. // We also always subdivide the cells containing a few chosen points so // that we have a better chance of sampling the minimum and maximum metric // values. kMaxSizeUV is the absolute value of the u- and v-coordinate // where the cell size at a given level is maximal. double kMaxSizeUV = 0.3964182625366691; R2Point[] special_uv = { new R2Point(S2.DoubleEpsilon, S2.DoubleEpsilon), // Face center new R2Point(S2.DoubleEpsilon, 1), // Edge midpoint new R2Point(1, 1), // Face corner new R2Point(kMaxSizeUV, kMaxSizeUV), // Largest cell area new R2Point(S2.DoubleEpsilon, kMaxSizeUV), // Longest edge/diagonal }; bool force_subdivide = false; foreach (R2Point uv in special_uv) { if (children[i].BoundUV.Contains(uv)) { force_subdivide = true; } } var debugFlag = #if s2debug true; #else false; #endif if (force_subdivide || cell.Level < (debugFlag ? 5 : 6) || S2Testing.Random.OneIn(debugFlag ? 5 : 4)) { TestSubdivide(children[i]); } } // Check sum of child areas equals parent area. // // For ExactArea(), the best relative error we can expect is about 1e-6 // because the precision of the unit vector coordinates is only about 1e-15 // and the edge length of a leaf cell is about 1e-9. // // For ApproxArea(), the areas are accurate to within a few percent. // // For AverageArea(), the areas themselves are not very accurate, but // the average area of a parent is exactly 4 times the area of a child. Assert.True(Math.Abs(Math.Log(exact_area / cell.ExactArea())) <= Math.Abs(Math.Log((1 + 1e-6)))); Assert.True(Math.Abs(Math.Log((approx_area / cell.ApproxArea()))) <= Math.Abs(Math.Log((1.03)))); Assert.True(Math.Abs(Math.Log((average_area / cell.AverageArea()))) <= Math.Abs(Math.Log((1 + 1e-15)))); }
public void Test_S2Cap_Basic() { // Test basic properties of empty and full caps. S2Cap empty = S2Cap.Empty; S2Cap full = S2Cap.Full; Assert.True(empty.IsValid()); Assert.True(empty.IsEmpty()); Assert.True(empty.Complement().IsFull()); Assert.True(full.IsValid()); Assert.True(full.IsFull()); Assert.True(full.Complement().IsEmpty()); Assert.Equal(2, full.Height()); Assert2.DoubleEqual(180.0, full.Radius.Degrees()); // Test ==/!=. Assert.Equal(full, full); Assert.Equal(empty, empty); Assert.NotEqual(full, empty); // Test the S1Angle constructor using out-of-range arguments. Assert.True(new S2Cap(new S2Point(1, 0, 0), S1Angle.FromRadians(-20)).IsEmpty()); Assert.True(new S2Cap(new S2Point(1, 0, 0), S1Angle.FromRadians(5)).IsFull()); Assert.True(new S2Cap(new S2Point(1, 0, 0), S1Angle.Infinity).IsFull()); // Check that the default S2Cap is identical to Empty(). var default_empty = S2Cap.Empty; Assert.True(default_empty.IsValid()); Assert.True(default_empty.IsEmpty()); Assert.Equal(empty.Center, default_empty.Center); Assert.Equal(empty.Height(), default_empty.Height()); // Containment and intersection of empty and full caps. Assert.True(empty.Contains(empty)); Assert.True(full.Contains(empty)); Assert.True(full.Contains(full)); Assert.False(empty.InteriorIntersects(empty)); Assert.True(full.InteriorIntersects(full)); Assert.False(full.InteriorIntersects(empty)); // Singleton cap containing the x-axis. S2Cap xaxis = S2Cap.FromPoint(new S2Point(1, 0, 0)); Assert.True(xaxis.Contains(new S2Point(1, 0, 0))); Assert.False(xaxis.Contains(new S2Point(1, 1e-20, 0))); Assert.Equal(0, xaxis.Radius.Radians()); // Singleton cap containing the y-axis. S2Cap yaxis = S2Cap.FromPoint(new S2Point(0, 1, 0)); Assert.False(yaxis.Contains(xaxis.Center)); Assert.Equal(0, xaxis.Height()); // Check that the complement of a singleton cap is the full cap. S2Cap xcomp = xaxis.Complement(); Assert.True(xcomp.IsValid()); Assert.True(xcomp.IsFull()); Assert.True(xcomp.Contains(xaxis.Center)); // Check that the complement of the complement is *not* the original. Assert.True(xcomp.Complement().IsValid()); Assert.True(xcomp.Complement().IsEmpty()); Assert.False(xcomp.Complement().Contains(xaxis.Center)); // Check that very small caps can be represented accurately. // Here "kTinyRad" is small enough that unit vectors perturbed by this // amount along a tangent do not need to be renormalized. S2Cap tiny = new(new S2Point(1, 2, 3).Normalize(), S1Angle.FromRadians(kTinyRad)); var tangent = tiny.Center.CrossProd(new S2Point(3, 2, 1)).Normalize(); Assert.True(tiny.Contains(tiny.Center + 0.99 * kTinyRad * tangent)); Assert.False(tiny.Contains(tiny.Center + 1.01 * kTinyRad * tangent)); // Basic tests on a hemispherical cap. S2Cap hemi = S2Cap.FromCenterHeight(new S2Point(1, 0, 1).Normalize(), 1); Assert.Equal(-hemi.Center, hemi.Complement().Center); Assert.Equal(1, hemi.Complement().Height()); Assert.True(hemi.Contains(new S2Point(1, 0, 0))); Assert.False(hemi.Complement().Contains(new S2Point(1, 0, 0))); Assert.True(hemi.Contains(new S2Point(1, 0, -(1 - kEps)).Normalize())); Assert.False(hemi.InteriorContains(new S2Point(1, 0, -(1 + kEps)).Normalize())); // A concave cap. Note that the error bounds for point containment tests // increase with the cap angle, so we need to use a larger error bound // here. (It would be painful to do this everywhere, but this at least // gives an example of how to compute the maximum error.) S2Point center = GetLatLngPoint(80, 10); S1ChordAngle radius = new(S1Angle.FromDegrees(150)); double max_error = radius.GetS2PointConstructorMaxError() + radius.S1AngleConstructorMaxError + 3 * S2.DoubleEpsilon; // GetLatLngPoint() error S2Cap concave = new(center, radius); S2Cap concave_min = new(center, radius.PlusError(-max_error)); S2Cap concave_max = new(center, radius.PlusError(max_error)); Assert.True(concave_max.Contains(GetLatLngPoint(-70, 10))); Assert.False(concave_min.Contains(GetLatLngPoint(-70, 10))); Assert.True(concave_max.Contains(GetLatLngPoint(-50, -170))); Assert.False(concave_min.Contains(GetLatLngPoint(-50, -170))); // Cap containment tests. Assert.False(empty.Contains(xaxis)); Assert.False(empty.InteriorIntersects(xaxis)); Assert.True(full.Contains(xaxis)); Assert.True(full.InteriorIntersects(xaxis)); Assert.False(xaxis.Contains(full)); Assert.False(xaxis.InteriorIntersects(full)); Assert.True(xaxis.Contains(xaxis)); Assert.False(xaxis.InteriorIntersects(xaxis)); Assert.True(xaxis.Contains(empty)); Assert.False(xaxis.InteriorIntersects(empty)); Assert.True(hemi.Contains(tiny)); Assert.True(hemi.Contains(new S2Cap(new S2Point(1, 0, 0), S1Angle.FromRadians(S2.M_PI_4 - kEps)))); Assert.False(hemi.Contains(new S2Cap(new S2Point(1, 0, 0), S1Angle.FromRadians(S2.M_PI_4 + kEps)))); Assert.True(concave.Contains(hemi)); Assert.True(concave.InteriorIntersects(hemi.Complement())); Assert.False(concave.Contains(S2Cap.FromCenterHeight(-concave.Center, 0.1))); }