Esempio n. 1
0
        /// <summary>
        /// Construct a BasicPNN network.
        /// </summary>
        ///
        /// <param name="kernel">The kernel to use.</param>
        /// <param name="outmodel">The output model for this network.</param>
        /// <param name="inputCount">The number of inputs in this network.</param>
        /// <param name="outputCount">The number of outputs in this network.</param>
        public BasicPNN(PNNKernelType kernel, PNNOutputMode outmodel,
                        int inputCount, int outputCount) : base(kernel, outmodel, inputCount, outputCount)
        {
            SeparateClass = false;

            _sigma = new double[inputCount];
        }
Esempio n. 2
0
        /// <summary>
        /// Construct a BasicPNN network.
        /// </summary>
        ///
        /// <param name="kernel">The kernel to use.</param>
        /// <param name="outmodel">The output model for this network.</param>
        /// <param name="inputCount">The number of inputs in this network.</param>
        /// <param name="outputCount">The number of outputs in this network.</param>
        public BasicPNN(PNNKernelType kernel, PNNOutputMode outmodel,
                        int inputCount, int outputCount) : base(kernel, outmodel, inputCount, outputCount)
        {
            SeparateClass = false;

            _sigma = new double[inputCount];
        }
Esempio n. 3
0
        public void TestClassifyPNN()
        {
            PNNOutputMode mode    = PNNOutputMode.Classification;
            BasicPNN      network = new BasicPNN(PNNKernelType.Gaussian, mode, 2, 2);

            IMLDataSet trainingData = new BasicMLDataSet(XOR.XORInput, XOR.XORIdeal);

            TrainBasicPNN train = new TrainBasicPNN(network, trainingData);

            train.Iteration();

            XOR.VerifyXOR(network, 0.01);
        }
        public BasicPNN create()
        {
            PNNOutputMode mode = PNNOutputMode.Regression;

            BasicPNN network = new BasicPNN(PNNKernelType.Gaussian, mode, 2, 1);

            BasicMLDataSet trainingSet = new BasicMLDataSet(XOR.XORInput,
                                                            XOR.XORIdeal);

            TrainBasicPNN train = new TrainBasicPNN(network, trainingSet);

            train.Iteration();
            XOR.VerifyXOR(network, 0.001);
            return(network);
        }
Esempio n. 5
0
        public static string OutputModeToString(PNNOutputMode mode)
        {
            switch (mode)
            {
                case PNNOutputMode.Unsupervised:
                    return "unsupervised";

                case PNNOutputMode.Regression:
                    return "regression";

                case PNNOutputMode.Classification:
                    return "classification";
            }
            return null;
        }
Esempio n. 6
0
        /// <summary>
        /// Convert output mode to string.
        /// </summary>
        ///
        /// <param name="mode">The output mode.</param>
        /// <returns>The string.</returns>
        public static String OutputModeToString(PNNOutputMode mode)
        {
            switch (mode)
            {
            case PNNOutputMode.Regression:
                return("regression");

            case PNNOutputMode.Unsupervised:
                return("unsupervised");

            case PNNOutputMode.Classification:
                return("classification");

            default:
                return(null);
            }
        }
Esempio n. 7
0
 protected AbstractPNN(PNNKernelType kernel, PNNOutputMode outputMode, int inputCount, int outputCount)
 {
     while ((((uint) inputCount) + ((uint) inputCount)) >= 0)
     {
         this._kernel = kernel;
         this._outputMode = outputMode;
         this._inputCount = inputCount;
         if (((uint) inputCount) < 0)
         {
             goto Label_0020;
         }
         this._outputCount = outputCount;
         this.Trained = false;
         this.Error = double.MinValue;
         if (0 == 0)
         {
             this._confusion = null;
             goto Label_006C;
         }
     }
     return;
     Label_0020:
     if (((((uint) inputCount) | 0xfffffffe) != 0) && (((uint) inputCount) >= 0))
     {
         if ((((uint) outputCount) & 0) == 0)
         {
             return;
         }
         goto Label_006C;
     }
     Label_0038:
     if (this._outputMode == PNNOutputMode.Classification)
     {
         this._confusion = new int[this._outputCount + 1];
         goto Label_0020;
     }
     return;
     Label_006C:
     this.Exclude = -1;
     this._deriv = new double[inputCount];
     this._deriv2 = new double[inputCount];
     goto Label_0038;
 }
Esempio n. 8
0
        /// <summary>
        /// Constructor.
        /// </summary>
        ///
        /// <param name="kernel">The kernel type to use.</param>
        /// <param name="outputMode">The output mode to use.</param>
        /// <param name="inputCount">The input count.</param>
        /// <param name="outputCount">The output count.</param>
        protected AbstractPNN(PNNKernelType kernel,
                              PNNOutputMode outputMode, int inputCount,
                              int outputCount)
        {
            _kernel      = kernel;
            _outputMode  = outputMode;
            _inputCount  = inputCount;
            _outputCount = outputCount;
            Trained      = false;
            Error        = -1000;
            _confusion   = null;
            Exclude      = -1;

            _deriv  = new double[inputCount];
            _deriv2 = new double[inputCount];

            if (_outputMode == PNNOutputMode.Classification)
            {
                _confusion = new int[_outputCount + 1];
            }
        }
Esempio n. 9
0
        /// <summary>
        /// Constructor.
        /// </summary>
        ///
        /// <param name="kernel">The kernel type to use.</param>
        /// <param name="outputMode">The output mode to use.</param>
        /// <param name="inputCount">The input count.</param>
        /// <param name="outputCount">The output count.</param>
        protected AbstractPNN(PNNKernelType kernel,
                           PNNOutputMode outputMode, int inputCount,
                           int outputCount)
        {
            _kernel = kernel;
            _outputMode = outputMode;
            _inputCount = inputCount;
            _outputCount = outputCount;
            Trained = false;
            Error = -1000;
            _confusion = null;
            Exclude = -1;

            _deriv = new double[inputCount];
            _deriv2 = new double[inputCount];

            if (_outputMode == PNNOutputMode.Classification)
            {
                _confusion = new int[_outputCount + 1];
            }
        }
Esempio n. 10
0
 /// <summary>
 /// Construct the object.
 /// </summary>
 public PNNPattern()
 {
     _kernel = PNNKernelType.Gaussian;
     _outmodel = PNNOutputMode.Regression;
 }
Esempio n. 11
0
 /// <summary>
 /// Construct the object.
 /// </summary>
 public PNNPattern()
 {
     _kernel   = PNNKernelType.Gaussian;
     _outmodel = PNNOutputMode.Regression;
 }
Esempio n. 12
0
        /// <summary>
        /// Read an object.
        /// </summary>
        public Object Read(Stream mask0)
        {
            var ins0 = new EncogReadHelper(mask0);
            EncogFileSection section;
            var samples = new BasicMLDataSet();
            IDictionary <String, String> networkParams = null;
            PNNKernelType kernel      = default(PNNKernelType) /* was: null */;
            PNNOutputMode outmodel    = default(PNNOutputMode) /* was: null */;
            int           inputCount  = 0;
            int           outputCount = 0;
            double        error       = 0;

            double[] sigma = null;

            while ((section = ins0.ReadNextSection()) != null)
            {
                if (section.SectionName.Equals("PNN") &&
                    section.SubSectionName.Equals("PARAMS"))
                {
                    networkParams = section.ParseParams();
                }
                if (section.SectionName.Equals("PNN") &&
                    section.SubSectionName.Equals("NETWORK"))
                {
                    IDictionary <String, String> paras = section.ParseParams();
                    inputCount = EncogFileSection.ParseInt(paras,
                                                           PersistConst.InputCount);
                    outputCount = EncogFileSection.ParseInt(paras,
                                                            PersistConst.OutputCount);
                    kernel   = StringToKernel(paras[PersistConst.Kernel]);
                    outmodel = StringToOutputMode(paras[PropertyOutputMode]);
                    error    = EncogFileSection
                               .ParseDouble(paras, PersistConst.Error);
                    sigma = section.ParseDoubleArray(paras, PersistConst.Sigma);
                }
                if (section.SectionName.Equals("PNN") &&
                    section.SubSectionName.Equals("SAMPLES"))
                {
                    foreach (String line in section.Lines)
                    {
                        IList <String> cols = EncogFileSection
                                              .SplitColumns(line);
                        int index     = 0;
                        var inputData = new BasicMLData(inputCount);
                        for (int i = 0; i < inputCount; i++)
                        {
                            inputData[i] =
                                CSVFormat.EgFormat.Parse(cols[index++]);
                        }
                        var idealData = new BasicMLData(inputCount);

                        idealData[0] = CSVFormat.EgFormat.Parse(cols[index++]);

                        IMLDataPair pair = new BasicMLDataPair(inputData,
                                                               idealData);
                        samples.Add(pair);
                    }
                }
            }

            var result = new BasicPNN(kernel, outmodel, inputCount,
                                      outputCount);

            if (networkParams != null)
            {
                EngineArray.PutAll(networkParams, result.Properties);
            }
            result.Samples = samples;
            result.Error   = error;
            if (sigma != null)
            {
                EngineArray.ArrayCopy(sigma, result.Sigma);
            }

            return(result);
        }