public void TestMlpBuild() { mlpNetwork.Instantiate(); Assert.AreEqual(mlpNetwork.CurrentError, 0); Assert.AreEqual(mlpNetwork.HiddenLayers, 1); Assert.AreEqual(mlpNetwork.TransferFunction, ActivationNeuroMode.SIGMOIDAL); Assert.AreEqual(mlpNetwork.OutputSize, 1); Assert.AreEqual(mlpNetwork.InputSize, 2); }
public void Build(AnnBuild AnnBuilding) { if (network != null) { network.Destroy(); } network = new Mlp( AnnBuilding.InputUnits, AnnBuilding.HiddenUnits, AnnBuilding.HiddenLayers, AnnBuilding.OutputUnits, AnnBuilding.Bias, AnnBuilding.ActivationNeuroMode ); synInitMode = AnnBuilding.SynInitMode; network.Instantiate(); status = NetworkStatus.UNTRAINED; logger.InfoFormat("Building neural network classifier: {0}", this.ToString()); }
private void Build(uint input, uint hiddenLayers, uint[] hiddenNeurons, uint output) { // Build network model mlpNetwork = new Mlp(input, hiddenNeurons, hiddenLayers, output); mlpNetwork.Instantiate(); }