Esempio n. 1
0
File: Gamma.cs Progetto: 0xCM/arrows
        /// <summary>
        /// Constructs a Gamma distribution with the given mean and mean logarithm.
        /// </summary>
        /// <param name="mean">Desired expected value.</param>
        /// <param name="meanLog">Desired expected logarithm.</param>
        /// <returns>A new Gamma distribution.</returns>
        /// <remarks>This function is equivalent to maximum-likelihood estimation of a Gamma distribution
        /// from data given by sufficient statistics.
        /// This function is significantly slower than the other constructors since it
        /// involves nonlinear optimization. The algorithm is a generalized Newton iteration,
        /// described in "Estimating a Gamma distribution" by T. Minka, 2002.
        /// </remarks>
        public static Gamma FromMeanAndMeanLog(double mean, double meanLog)
        {
            double delta = Math.Log(mean) - meanLog;

            if (delta <= 2e-16)
            {
                return(Gamma.PointMass(mean));
            }
            double shape = 0.5 / delta;

            for (int iter = 0; iter < 100; iter++)
            {
                double oldShape = shape;
                double g        = Math.Log(shape) - delta - MMath.Digamma(shape);
                shape /= 1 + g / (1 - shape * MMath.Trigamma(shape));
                if (Math.Abs(shape - oldShape) < 1e-8)
                {
                    break;
                }
            }
            if (Double.IsNaN(shape))
            {
                throw new Exception("shape is nan");
            }
            return(Gamma.FromShapeAndRate(shape, shape / mean));
        }
Esempio n. 2
0
File: Gamma.cs Progetto: 0xCM/arrows
        /// <summary>
        /// Constructs a Gamma distribution with the given log mean and mean logarithm.
        /// </summary>
        /// <param name="logMean">Log of desired expected value.</param>
        /// <param name="meanLog">Desired expected logarithm.</param>
        /// <returns>A new Gamma distribution.</returns>
        /// <remarks>
        /// This function is significantly slower than the other constructors since it
        /// involves nonlinear optimization. The algorithm is a generalized Newton iteration,
        /// described in "Estimating a Gamma distribution" by T. Minka, 2002.
        /// </remarks>
        public static Gamma FromLogMeanAndMeanLog(double logMean, double meanLog)
        {
            // logMean = log(shape)-log(rate)
            // meanLog = Psi(shape)-log(rate)
            // delta = log(shape)-Psi(shape)
            double delta = logMean - meanLog;

            if (delta <= 2e-16)
            {
                return(Gamma.PointMass(Math.Exp(logMean)));
            }
            double shape = 0.5 / delta;

            for (int iter = 0; iter < 100; iter++)
            {
                double oldShape = shape;
                double g        = Math.Log(shape) - delta - MMath.Digamma(shape);
                shape /= 1 + g / (1 - shape * MMath.Trigamma(shape));
                if (Math.Abs(shape - oldShape) < 1e-8)
                {
                    break;
                }
            }
            if (Double.IsNaN(shape))
            {
                throw new Exception("shape is nan");
            }
            Gamma result = Gamma.FromShapeAndRate(shape, shape / Math.Exp(logMean));

            return(result);
        }
Esempio n. 3
0
 public void DigammaInvTest()
 {
     for (int i = 0; i < 1000; i++)
     {
         double y     = -3 + i * 0.01;
         double x     = MMath.DigammaInv(y);
         double y2    = MMath.Digamma(x);
         double error = MMath.AbsDiff(y, y2, 1e-8);
         Assert.True(error < 1e-8);
     }
 }
Esempio n. 4
0
 private static double LogMinusDigamma(double shape)
 {
     if (shape > largeShape)
     {
         // The next term in the series is -1/120/shape^4, which bounds the error.
         return((0.5 - 1.0 / 12 / shape) / shape);
     }
     else
     {
         return(Math.Log(shape) - MMath.Digamma(shape));
     }
 }
 static internal double ComputeMeanLogOneMinus(double trueCount, double falseCount)
 {
     if (double.IsPositiveInfinity(falseCount))
     {
         return(Math.Log(1 - trueCount));
     }
     if ((trueCount == 0.0) && (falseCount == 0.0))
     {
         throw new ImproperDistributionException(new Beta(trueCount, falseCount));
     }
     return(MMath.Digamma(falseCount) - MMath.Digamma(trueCount + falseCount));
 }
 /// <summary>
 /// Used to compute log odds in the above operator
 /// </summary>
 /// <param name="trueCount"></param>
 /// <param name="falseCount"></param>
 /// <returns></returns>
 internal static double ComputeLogOdds(double trueCount, double falseCount)
 {
     if (falseCount == Double.PositiveInfinity)
     {
         // compute log odds from prob true
         return(MMath.Logit(trueCount));
     }
     else if ((trueCount == 0) || (falseCount == 0))
     {
         throw new ImproperMessageException(new Beta(trueCount, falseCount));
     }
     return(MMath.Digamma(trueCount) - MMath.Digamma(falseCount));
 }
Esempio n. 7
0
 /// <summary>
 /// Computes E[log(x)]
 /// </summary>
 /// <returns></returns>
 public double GetMeanLog()
 {
     if (IsPointMass)
     {
         return(Math.Log(Point));
     }
     else if (!IsProper())
     {
         throw new ImproperDistributionException(this);
     }
     else
     {
         return(Power * (MMath.Digamma(Shape) - Math.Log(Rate)));
     }
 }
Esempio n. 8
0
 /// <summary>
 /// The expected logarithm E[log(p)].
 /// </summary>
 /// <returns></returns>
 public double GetMeanLog()
 {
     if (IsPointMass)
     {
         return(System.Math.Log(Point));
     }
     else if (!IsProper())
     {
         throw new ImproperDistributionException(this);
     }
     else
     {
         return(MMath.Digamma(TrueCount) - MMath.Digamma(TotalCount));
     }
 }
Esempio n. 9
0
        public void RandWishart()
        {
            // multivariate Gamma
            double a = 2.7;
            int    d = 3;
            PositiveDefiniteMatrix mTrue = new PositiveDefiniteMatrix(d, d);

            mTrue.SetToIdentity();
            mTrue.SetToProduct(mTrue, a);
            LowerTriangularMatrix  L = new LowerTriangularMatrix(d, d);
            PositiveDefiniteMatrix X = new PositiveDefiniteMatrix(d, d);
            PositiveDefiniteMatrix m = new PositiveDefiniteMatrix(d, d);

            m.SetAllElementsTo(0);
            double s = 0;

            for (int i = 0; i < nsamples; i++)
            {
                Rand.Wishart(a, L);
                X.SetToProduct(L, L.Transpose());
                m = m + X;
                s = s + X.LogDeterminant();
            }
            double sTrue = 0;

            for (int i = 0; i < d; i++)
            {
                sTrue += MMath.Digamma(a - i * 0.5);
            }
            m.Scale(1.0 / nsamples);
            s = s / nsamples;

            Console.WriteLine("");
            Console.WriteLine("Multivariate Gamma");
            Console.WriteLine("-------------------");

            Console.WriteLine("m = \n{0}", m);
            double dError = m.MaxDiff(mTrue);

            if (dError > TOLERANCE)
            {
                Assert.True(false, String.Format("Wishart({0}) mean: (should be {0}*I), error = {1}", a, dError));
            }
            if (System.Math.Abs(s - sTrue) > TOLERANCE)
            {
                Assert.True(false, string.Format("E[logdet]: {0} (should be {1})", s, sTrue));
            }
        }
Esempio n. 10
0
        /// <summary>
        /// Gets the mean log determinant
        /// </summary>
        /// <returns>The mean log determinant</returns>
        public double GetMeanLogDeterminant()
        {
            if (IsPointMass)
            {
                return(Point.LogDeterminant());
            }
            // E[logdet(X)] = -logdet(B) + sum_{i=0..d-1} digamma(a)
            double s = 0;
            int    d = Dimension;

            for (int i = 0; i < d; i++)
            {
                s += MMath.Digamma(Shape - i * 0.5);
            }
            s -= rate.LogDeterminant();
            return(s);
        }
Esempio n. 11
0
 /// <summary>VMP message to <c>sample</c>.</summary>
 /// <param name="probTrue">Incoming message from <c>probTrue</c>. Must be a proper distribution. If uniform, the result will be uniform.</param>
 /// <returns>The outgoing VMP message to the <c>sample</c> argument.</returns>
 /// <remarks>
 ///   <para>The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except <c>sample</c>. The formula is <c>exp(sum_(probTrue) p(probTrue) log(factor(sample,probTrue)))</c>.</para>
 /// </remarks>
 /// <exception cref="ImproperMessageException">
 ///   <paramref name="probTrue" /> is not a proper distribution.</exception>
 public static Bernoulli SampleAverageLogarithm([SkipIfUniform] Beta probTrue)
 {
     if (probTrue.IsPointMass)
     {
         return(new Bernoulli(probTrue.Point));
     }
     else if (!probTrue.IsProper())
     {
         throw new ImproperMessageException(probTrue);
     }
     else
     {
         // E[x*log(p) + (1-x)*log(1-p)] = x*E[log(p)] + (1-x)*E[log(1-p)]
         // p(x=true) = exp(E[log(p)])/(exp(E[log(p)]) + exp(E[log(1-p)]))
         // log(p(x=true)/p(x=false)) = E[log(p)] - E[log(1-p)] = digamma(trueCount) - digamma(falseCount)
         return(Bernoulli.FromLogOdds(MMath.Digamma(probTrue.TrueCount) - MMath.Digamma(probTrue.FalseCount)));
     }
 }
Esempio n. 12
0
 /// <summary>
 /// The expected logarithms E[log(p)] and E[log(1-p)].
 /// </summary>
 /// <param name="eLogP"></param>
 /// <param name="eLogOneMinusP"></param>
 public void GetMeanLogs(out double eLogP, out double eLogOneMinusP)
 {
     if (IsPointMass)
     {
         eLogP         = System.Math.Log(Point);
         eLogOneMinusP = System.Math.Log(1 - Point);
     }
     else if (!IsProper())
     {
         throw new ImproperDistributionException(this);
     }
     else
     {
         double d = MMath.Digamma(TotalCount);
         eLogP         = MMath.Digamma(TrueCount) - d;
         eLogOneMinusP = MMath.Digamma(FalseCount) - d;
     }
 }
Esempio n. 13
0
 public static void GetDerivLogZ(GammaPower sum, GammaPower toSum, double ds, double dds, double dr, double ddr, out double dlogZ, out double ddlogZ)
 {
     if (sum.Power != toSum.Power)
     {
         throw new ArgumentException($"sum.Power ({sum.Power}) != toSum.Power ({toSum.Power})");
     }
     if (toSum.IsPointMass)
     {
         throw new NotSupportedException();
     }
     if (toSum.IsUniform())
     {
         dlogZ  = 0;
         ddlogZ = 0;
         return;
     }
     if (sum.IsPointMass)
     {
         // Z = toSum.GetLogProb(sum.Point)
         // log(Z) = (toSum.Shape/toSum.Power - 1)*log(sum.Point) - toSum.Rate*sum.Point^(1/toSum.Power) + toSum.Shape*log(toSum.Rate) - GammaLn(toSum.Shape)
         if (sum.Point == 0)
         {
             throw new NotSupportedException();
         }
         double logSumOverPower = Math.Log(sum.Point) / toSum.Power;
         double powSum          = Math.Exp(logSumOverPower);
         double logRate         = Math.Log(toSum.Rate);
         double digammaShape    = MMath.Digamma(toSum.Shape);
         double shapeOverRate   = toSum.Shape / toSum.Rate;
         dlogZ  = ds * logSumOverPower - dr * powSum + ds * logRate + shapeOverRate * dr - digammaShape * ds;
         ddlogZ = dds * logSumOverPower - ddr * powSum + dds * logRate + 2 * ds * dr / toSum.Rate + shapeOverRate * ddr - MMath.Trigamma(toSum.Shape) * ds - digammaShape * dds;
     }
     else
     {
         GammaPower product = sum * toSum;
         double     cs      = (MMath.Digamma(product.Shape) - Math.Log(product.Shape)) - (MMath.Digamma(toSum.Shape) - Math.Log(toSum.Shape));
         double     cr      = toSum.Shape / toSum.Rate - product.Shape / product.Rate;
         double     css     = MMath.Trigamma(product.Shape) - MMath.Trigamma(toSum.Shape);
         double     csr     = 1 / toSum.Rate - 1 / product.Rate;
         double     crr     = product.Shape / (product.Rate * product.Rate) - toSum.Shape / (toSum.Rate * toSum.Rate);
         dlogZ  = cs * ds + cr * dr;
         ddlogZ = cs * dds + cr * ddr + css * ds * ds + 2 * csr * ds * dr + crr * dr * dr;
     }
 }
Esempio n. 14
0
        public static Gaussian DAverageConditional([SkipIfUniform] Gamma exp, [Proper] Gaussian d)
        {
            // as a function of d, the factor is Ga(exp(d); shape, rate) = exp(d*(shape-1) -rate*exp(d))
            if (exp.IsUniform())
            {
                return(Gaussian.Uniform());
            }
            if (exp.IsPointMass)
            {
                return(ExpOp.DAverageConditional(exp.Point));
            }
            if (exp.Rate < 0)
            {
                throw new ImproperMessageException(exp);
            }
            if (exp.Rate == 0)
            {
                return(Gaussian.FromNatural(exp.Shape - 1, 0));
            }
            if (d.IsUniform())
            {
                if (exp.Shape <= 1)
                {
                    throw new ArgumentException("The posterior has infinite variance due to input of Exp distributed as " + d + " and output of Exp distributed as " + exp +
                                                " (shape <= 1)");
                }
                // posterior for d is a shifted log-Gamma distribution:
                // exp((a-1)*d - b*exp(d)) =propto exp(a*(d+log(b)) - exp(d+log(b)))
                // we find the Gaussian with same moments.
                // u = d+log(b)
                // E[u] = digamma(a-1)
                // E[d] = E[u]-log(b) = digamma(a-1)-log(b)
                // var(d) = var(u) = trigamma(a-1)
                double lnRate = Math.Log(exp.Rate);
                return(new Gaussian(MMath.Digamma(exp.Shape - 1) - lnRate, MMath.Trigamma(exp.Shape - 1)));
            }
            double aMinus1 = exp.Shape - 1;
            double b       = exp.Rate;

            if (d.IsPointMass)
            {
                double x      = d.Point;
                double expx   = Math.Exp(x);
                double dlogf  = aMinus1 - b * expx;
                double ddlogf = -b * expx;
                return(Gaussian.FromDerivatives(x, dlogf, ddlogf, true));
            }
            double dmode, dmin, dmax;

            GetIntegrationBounds(exp, d, out dmode, out dmin, out dmax);
            double expmode = Math.Exp(dmode);
            int    n       = QuadratureNodeCount;
            double inc     = (dmax - dmin) / (n - 1);
            MeanVarianceAccumulator mva = new MeanVarianceAccumulator();

            for (int i = 0; i < n; i++)
            {
                double x          = dmin + i * inc;
                double xMinusMode = x - dmode;
                double diff       = aMinus1 * xMinusMode - b * (Math.Exp(x) - expmode)
                                    - 0.5 * ((x * x - dmode * dmode) * d.Precision - 2 * xMinusMode * d.MeanTimesPrecision);
                double p = Math.Exp(diff);
                mva.Add(x, p);
                if (double.IsNaN(mva.Variance))
                {
                    throw new Exception();
                }
            }
            double   dMean     = mva.Mean;
            double   dVariance = mva.Variance;
            Gaussian result    = Gaussian.FromMeanAndVariance(dMean, dVariance);

            result.SetToRatio(result, d, true);
            return(result);
        }
Esempio n. 15
0
        /// <summary>
        /// EP message to 'exp'
        /// </summary>
        /// <param name="exp">Incoming message from 'exp'.</param>
        /// <param name="d">Incoming message from 'd'. Must be a proper distribution.  If uniform, the result will be uniform.</param>
        /// <param name="to_d">Previous outgoing message to 'd'.</param>
        /// <returns>The outgoing EP message to the 'exp' argument</returns>
        /// <remarks><para>
        /// The outgoing message is a distribution matching the moments of 'exp' as the random arguments are varied.
        /// The formula is <c>proj[p(exp) sum_(d) p(d) factor(exp,d)]/p(exp)</c>.
        /// </para></remarks>
        /// <exception cref="ImproperMessageException"><paramref name="d"/> is not a proper distribution</exception>
        public static Gamma ExpAverageConditional(Gamma exp, [Proper] Gaussian d, Gaussian to_d)
        {
            if (d.IsPointMass)
            {
                return(Gamma.PointMass(Math.Exp(d.Point)));
            }
            if (d.IsUniform())
            {
                return(Gamma.FromShapeAndRate(0, 0));
            }
            if (exp.IsPointMass)
            {
                // Z = int_y delta(x - exp(y)) N(y; my, vy) dy
                //   = int_u delta(x - u) N(log(u); my, vy)/u du
                //   = N(log(x); my, vy)/x
                // logZ = -log(x) -0.5/vy*(log(x)-my)^2
                // dlogZ/dx = -1/x -1/vy*(log(x)-my)/x
                // d2logZ/dx2 = -dlogZ/dx/x -1/vy/x^2
                // log Ga(x;a,b) = (a-1)*log(x) - bx
                // dlogGa/dx = (a-1)/x - b
                // d2logGa/dx2 = -(a-1)/x^2
                // match derivatives and solve for (a,b)
                double shape = (1 + d.GetMean() - Math.Log(exp.Point)) * d.Precision;
                double rate  = d.Precision / exp.Point;
                return(Gamma.FromShapeAndRate(shape, rate));
            }
            if (exp.IsUniform())
            {
                return(ExpAverageLogarithm(d));
            }

            if (to_d.IsUniform() && exp.Shape > 1)
            {
                to_d = new Gaussian(MMath.Digamma(exp.Shape - 1) - Math.Log(exp.Rate), MMath.Trigamma(exp.Shape - 1));
            }

            double   mD, vD;
            Gaussian dMarginal = d * to_d;

            dMarginal.GetMeanAndVariance(out mD, out vD);
            double Z       = 0;
            double sumy    = 0;
            double sumexpy = 0;

            if (vD < 1e-6)
            {
                double m, v;
                d.GetMeanAndVariance(out m, out v);
                return(Gamma.FromLogMeanAndMeanLog(m + v / 2.0, m));
            }

            //if (vD < 10)
            if (true)
            {
                // Use Gauss-Hermite quadrature
                double[] nodes   = new double[QuadratureNodeCount];
                double[] weights = new double[QuadratureNodeCount];

                Quadrature.GaussianNodesAndWeights(mD, vD, nodes, weights);
                for (int i = 0; i < weights.Length; i++)
                {
                    weights[i] = Math.Log(weights[i]);
                }
                if (!to_d.IsUniform())
                {
                    // modify the weights to include q(y_k)/N(y_k;m,v)
                    for (int i = 0; i < weights.Length; i++)
                    {
                        weights[i] += d.GetLogProb(nodes[i]) - dMarginal.GetLogProb(nodes[i]);
                    }
                }

                double maxLogF = Double.NegativeInfinity;
                // f(x,y) = Ga(exp(y); shape, rate) = exp(y*(shape-1) -rate*exp(y))
                // Z E[x] = int_y int_x x Ga(x;a,b) delta(x - exp(y)) N(y;my,vy) dx dy
                //        = int_y exp(y) Ga(exp(y);a,b) N(y;my,vy) dy
                // Z E[log(x)] = int_y y Ga(exp(y);a,b) N(y;my,vy) dy
                for (int i = 0; i < weights.Length; i++)
                {
                    double y    = nodes[i];
                    double logf = weights[i] + (exp.Shape - 1) * y - exp.Rate * Math.Exp(y);
                    if (logf > maxLogF)
                    {
                        maxLogF = logf;
                    }
                    weights[i] = logf;
                }
                for (int i = 0; i < weights.Length; i++)
                {
                    double y     = nodes[i];
                    double f     = Math.Exp(weights[i] - maxLogF);
                    double f_y   = f * y;
                    double fexpy = f * Math.Exp(y);
                    Z       += f;
                    sumy    += f_y;
                    sumexpy += fexpy;
                }
            }
            else
            {
                Converter <double, double> p = delegate(double y) {
                    return(d.GetLogProb(y) + (exp.Shape - 1) * y - exp.Rate * Math.Exp(y));
                };
                double sc     = Math.Sqrt(vD);
                double offset = p(mD);
                Z       = Quadrature.AdaptiveClenshawCurtis(z => Math.Exp(p(sc * z + mD) - offset), 1, 16, 1e-6);
                sumy    = Quadrature.AdaptiveClenshawCurtis(z => (sc * z + mD) * Math.Exp(p(sc * z + mD) - offset), 1, 16, 1e-6);
                sumexpy = Quadrature.AdaptiveClenshawCurtis(z => Math.Exp(sc * z + mD + p(sc * z + mD) - offset), 1, 16, 1e-6);
            }
            if (Z == 0)
            {
                throw new ApplicationException("Z==0");
            }
            double s = 1.0 / Z;

            if (Double.IsPositiveInfinity(s))
            {
                throw new ApplicationException("s is -inf");
            }
            double meanLog = sumy * s;
            double mean    = sumexpy * s;
            Gamma  result  = Gamma.FromMeanAndMeanLog(mean, meanLog);

            if (ForceProper)
            {
                result.SetToRatioProper(result, exp);
            }
            else
            {
                result.SetToRatio(result, exp);
            }
            if (Double.IsNaN(result.Shape) || Double.IsNaN(result.Rate))
            {
                throw new ApplicationException("result is nan");
            }
            return(result);
        }
Esempio n. 16
0
        /// <summary>
        /// EP message to 'd'
        /// </summary>
        /// <param name="exp">Incoming message from 'exp'. Must be a proper distribution.  If uniform, the result will be uniform.</param>
        /// <param name="d">Incoming message from 'd'. Must be a proper distribution.  If uniform, the result will be uniform.</param>
        /// <param name="result">Modified to contain the outgoing message</param>
        /// <returns><paramref name="result"/></returns>
        /// <remarks><para>
        /// The outgoing message is a distribution matching the moments of 'd' as the random arguments are varied.
        /// The formula is <c>proj[p(d) sum_(exp) p(exp) factor(exp,d)]/p(d)</c>.
        /// </para></remarks>
        /// <exception cref="ImproperMessageException"><paramref name="exp"/> is not a proper distribution</exception>
        /// <exception cref="ImproperMessageException"><paramref name="d"/> is not a proper distribution</exception>
        //internal static Gaussian DAverageConditional_slow([SkipIfUniform] Gamma exp, [Proper] Gaussian d)
        //{
        //  Gaussian to_d = exp.Shape<=1 || exp.Rate==0 ?
        //            Gaussian.Uniform()
        //            : new Gaussian(MMath.Digamma(exp.Shape-1) - Math.Log(exp.Rate), MMath.Trigamma(exp.Shape));
        //  //var to_d = Gaussian.Uniform();
        //  for (int i = 0; i < QuadratureIterations; i++) {
        //    to_d = DAverageConditional(exp, d, to_d);
        //  }
        //  return to_d;
        //}
        // to_d does not need to be Fresh. it is only used for quadrature proposal.
        public static Gaussian DAverageConditional([SkipIfUniform] Gamma exp, [Proper] Gaussian d, Gaussian result)
        {
            if (exp.IsUniform() || d.IsPointMass)
            {
                return(Gaussian.Uniform());
            }
            if (exp.IsPointMass)
            {
                return(DAverageConditional(exp.Point));
            }
            if (exp.Rate < 0)
            {
                throw new ImproperMessageException(exp);
            }
            if (d.IsUniform())
            {
                // posterior for d is a shifted log-Gamma distribution:
                // exp((a-1)*d - b*exp(d)) =propto exp(a*(d+log(b)) - exp(d+log(b)))
                // we find the Gaussian with same moments.
                // u = d+log(b)
                // E[u] = digamma(a-1)
                // E[d] = E[u]-log(b) = digamma(a-1)-log(b)
                // var(d) = var(u) = trigamma(a-1)
                double lnRate = Math.Log(exp.Rate);
                return(new Gaussian(MMath.Digamma(exp.Shape - 1) - lnRate, MMath.Trigamma(exp.Shape - 1)));
            }
            // We use moment matching to find the best Gaussian message.
            // The moments are computed via quadrature.
            // Z = int_y f(x,y) q(y) dy =approx sum_k w_k f(x,y_k) q(y_k)/N(y_k;m,v)
            // f(x,y) = Ga(exp(y); shape, rate) = exp(y*(shape-1) -rate*exp(y))
            double[] nodes = new double[QuadratureNodeCount];
            double[] weights = new double[QuadratureNodeCount];
            double   moD, voD;

            d.GetMeanAndVariance(out moD, out voD);
            double mD, vD;

            if (result.IsUniform() && exp.Shape > 1)
            {
                result = new Gaussian(MMath.Digamma(exp.Shape - 1) - Math.Log(exp.Rate), MMath.Trigamma(exp.Shape - 1));
            }
            Gaussian dMarginal = d * result;

            dMarginal.GetMeanAndVariance(out mD, out vD);
            Quadrature.GaussianNodesAndWeights(mD, vD, nodes, weights);
            if (!result.IsUniform())
            {
                // modify the weights to include q(y_k)/N(y_k;m,v)
                for (int i = 0; i < weights.Length; i++)
                {
                    weights[i] *= Math.Exp(d.GetLogProb(nodes[i]) - Gaussian.GetLogProb(nodes[i], mD, vD));
                }
            }
            double Z       = 0;
            double sumy    = 0;
            double sumy2   = 0;
            double maxLogF = Double.NegativeInfinity;

            for (int i = 0; i < weights.Length; i++)
            {
                double y    = nodes[i];
                double logf = Math.Log(weights[i]) + (exp.Shape - 1) * y - exp.Rate * Math.Exp(y);
                if (logf > maxLogF)
                {
                    maxLogF = logf;
                }
                weights[i] = logf;
            }
            for (int i = 0; i < weights.Length; i++)
            {
                double y   = nodes[i];
                double f   = Math.Exp(weights[i] - maxLogF);
                double f_y = f * y;
                double fyy = f_y * y;
                Z     += f;
                sumy  += f_y;
                sumy2 += fyy;
            }
            if (Z == 0)
            {
                return(Gaussian.Uniform());
            }
            double s    = 1.0 / Z;
            double mean = sumy * s;
            double var  = sumy2 * s - mean * mean;

            if (var <= 0.0)
            {
                double quadratureGap = 0.1;
                var = 2 * vD * quadratureGap * quadratureGap;
            }
            result = new Gaussian(mean, var);
            if (ForceProper)
            {
                result.SetToRatioProper(result, d);
            }
            else
            {
                result.SetToRatio(result, d);
            }
            if (result.Precision < -1e10)
            {
                throw new ApplicationException("result has negative precision");
            }
            if (Double.IsPositiveInfinity(result.Precision))
            {
                throw new ApplicationException("result is point mass");
            }
            if (Double.IsNaN(result.Precision) || Double.IsNaN(result.MeanTimesPrecision))
            {
                throw new ApplicationException("result is nan");
            }
            return(result);
        }
Esempio n. 17
0
        //internal static Gaussian DAverageConditional_slow([SkipIfUniform] Gamma exp, [Proper] Gaussian d)
        //{
        //  Gaussian to_d = exp.Shape<=1 || exp.Rate==0 ?
        //            Gaussian.Uniform()
        //            : new Gaussian(MMath.Digamma(exp.Shape-1) - Math.Log(exp.Rate), MMath.Trigamma(exp.Shape));
        //  //var to_d = Gaussian.Uniform();
        //  for (int i = 0; i < QuadratureIterations; i++) {
        //    to_d = DAverageConditional(exp, d, to_d);
        //  }
        //  return to_d;
        //}
        // to_d does not need to be Fresh. it is only used for quadrature proposal.

        /// <include file='FactorDocs.xml' path='factor_docs/message_op_class[@name="ExpOp"]/message_doc[@name="DAverageConditional(Gamma, Gaussian, Gaussian)"]/*'/>
        public static Gaussian DAverageConditional([SkipIfUniform] Gamma exp, [Proper] Gaussian d, Gaussian result)
        {
            if (exp.IsUniform() || d.IsUniform() || d.IsPointMass || exp.IsPointMass || exp.Rate <= 0)
            {
                return(ExpOp_Slow.DAverageConditional(exp, d));
            }
            // We use moment matching to find the best Gaussian message.
            // The moments are computed via quadrature.
            // Z = int_y f(x,y) q(y) dy =approx sum_k w_k f(x,y_k) q(y_k)/N(y_k;m,v)
            // f(x,y) = Ga(exp(y); shape, rate) = exp(y*(shape-1) -rate*exp(y))
            double[] nodes = new double[QuadratureNodeCount];
            double[] weights = new double[QuadratureNodeCount];
            double   moD, voD;

            d.GetMeanAndVariance(out moD, out voD);
            double mD, vD;

            if (result.IsUniform() && exp.Shape > 1)
            {
                result = new Gaussian(MMath.Digamma(exp.Shape - 1) - Math.Log(exp.Rate), MMath.Trigamma(exp.Shape - 1));
            }
            Gaussian dMarginal = d * result;

            dMarginal.GetMeanAndVariance(out mD, out vD);
            if (vD == 0)
            {
                return(ExpOp_Slow.DAverageConditional(exp, d));
            }
            Quadrature.GaussianNodesAndWeights(mD, vD, nodes, weights);
            if (!result.IsUniform())
            {
                // modify the weights to include q(y_k)/N(y_k;m,v)
                for (int i = 0; i < weights.Length; i++)
                {
                    weights[i] *= Math.Exp(d.GetLogProb(nodes[i]) - Gaussian.GetLogProb(nodes[i], mD, vD));
                }
            }
            double Z       = 0;
            double sumy    = 0;
            double sumy2   = 0;
            double maxLogF = Double.NegativeInfinity;

            for (int i = 0; i < weights.Length; i++)
            {
                double y    = nodes[i];
                double logf = Math.Log(weights[i]) + (exp.Shape - 1) * y - exp.Rate * Math.Exp(y);
                if (logf > maxLogF)
                {
                    maxLogF = logf;
                }
                weights[i] = logf;
            }
            for (int i = 0; i < weights.Length; i++)
            {
                double y   = nodes[i];
                double f   = Math.Exp(weights[i] - maxLogF);
                double f_y = f * y;
                double fyy = f_y * y;
                Z     += f;
                sumy  += f_y;
                sumy2 += fyy;
            }
            if (Z == 0)
            {
                return(Gaussian.Uniform());
            }
            double s    = 1.0 / Z;
            double mean = sumy * s;
            double var  = sumy2 * s - mean * mean;

            // TODO: explain this
            if (var <= 0.0)
            {
                double quadratureGap = 0.1;
                var = 2 * vD * quadratureGap * quadratureGap;
            }
            result = new Gaussian(mean, var);
            result.SetToRatio(result, d, ForceProper);
            if (result.Precision < -1e10)
            {
                throw new InferRuntimeException("result has negative precision");
            }
            if (Double.IsPositiveInfinity(result.Precision))
            {
                throw new InferRuntimeException("result is point mass");
            }
            if (Double.IsNaN(result.Precision) || Double.IsNaN(result.MeanTimesPrecision))
            {
                return(ExpOp_Slow.DAverageConditional(exp, d));
            }
            return(result);
        }
Esempio n. 18
0
#pragma warning disable 162
#endif

        /// <summary>
        /// Find a Beta distribution with given integral and mean times a Beta weight function.
        /// </summary>
        /// <param name="mean">The desired value of the mean</param>
        /// <param name="logZ">The desired value of the integral</param>
        /// <param name="a">trueCount-1 of the weight function</param>
        /// <param name="b">falseCount-1 of the weight function</param>
        /// <returns></returns>
        private static Beta BetaFromMeanAndIntegral(double mean, double logZ, double a, double b)
        {
            // The constraints are:
            // 1. int_p to_p(p) p^a (1-p)^b dp = exp(logZ)
            // 2. int_p to_p(p) p p^a (1-p)^b dp = mean*exp(logZ)
            // Let to_p(p) = Beta(p; af, bf)
            // The LHS of (1) is gamma(af+bf)/gamma(af+bf+a+b) gamma(af+a)/gamma(af) gamma(bf+b)/gamma(bf)
            // The LHS of (2) is gamma(af+bf)/gamma(af+bf+a+b+1) gamma(af+a+1)/gamma(af) gamma(bf+b)/gamma(bf)
            // The ratio of (2)/(1) is gamma(af+a+1)/gamma(af+a) gamma(af+bf+a+b)/gamma(af+bf+a+b+1) = (af+a)/(af+bf+a+b) = mean
            // Solving for bf gives bf = (af+a)/mean - (af+a+b).
            // To solve for af, we apply a generalized Newton algorithm to solve equation (1) with bf substituted.
            // af0 is the smallest value of af that ensures (af >= 0, bf >= 0).
            if (mean <= 0)
            {
                throw new ArgumentException("mean <= 0");
            }
            if (mean >= 1)
            {
                throw new ArgumentException("mean >= 1");
            }
            if (double.IsNaN(mean))
            {
                throw new ArgumentException("mean is NaN");
            }
            // If exp(logZ) exceeds the largest possible value of (1), then we return a point mass.
            // gammaln(x) =approx (x-0.5)*log(x) - x + 0.5*log(2pi)
            // (af+x)*log(af+x) =approx (af+x)*log(af) + x + 0.5*x*x/af
            // For large af, logZ = (af+bf-0.5)*log(af+bf) - (af+bf+a+b-0.5)*log(af+bf+a+b) +
            //                      (af+a-0.5)*log(af+a) - (af-0.5)*log(af) +
            //                      (bf+b-0.5)*log(bf+b) - (bf-0.5)*log(bf)
            // =approx (af+bf-0.5)*log(af+bf) - ((af+bf+a+b-0.5)*log(af+bf) + (a+b) + 0.5*(a+b)*(a+b)/(af+bf) -0.5*(a+b)/(af+bf)) +
            //   ((af+a-0.5)*log(af) + a + 0.5*a*a/af - 0.5*a/af) - (af-0.5)*log(af) +
            //   ((bf+b-0.5)*log(bf) + b + 0.5*b*b/bf - 0.5*b/bf) - (bf-0.5)*log(bf)
            // = -(a+b)*log(af+bf) - 0.5*(a+b)*(a+b-1)/(af+bf) + a*log(af) + 0.5*a*(a-1)/af + b*log(bf) + 0.5*b*(b-1)/bf
            // =approx (a+b)*log(m) + b*log((1-m)/m) + 0.5*(a+b)*(a+b-1)*m/af - 0.5*a*(a+1)/af - 0.5*b*(b+1)*m/(1-m)/af
            // =approx (a+b)*log(mean) + b*log((1-mean)/mean)
            double maxLogZ = (a + b) * Math.Log(mean) + b * Math.Log((1 - mean) / mean);
            // slope determines whether maxLogZ is the maximum or minimum possible value of logZ
            double slope = (a + b) * (a + b - 1) * mean - a * (a + 1) - b * (b + 1) * mean / (1 - mean);

            if ((slope <= 0 && logZ >= maxLogZ) || (slope > 0 && logZ <= maxLogZ))
            {
                // optimal af is infinite
                return(Beta.PointMass(mean));
            }
            // bf = (af+bx)*(1-m)/m
            double bx = -(mean * (a + b) - a) / (1 - mean);
            // af0 is the lower bound for af
            // we need both af>0 and bf>0
            double af0      = Math.Max(0, -bx);
            double x        = Math.Max(0, bx);
            double af       = af0 + 1; // initial guess for af
            double invMean  = 1 / mean;
            double bf       = (af + a) * invMean - (af + a + b);
            int    numIters = 20;

            for (int iter = 0; iter < numIters; iter++)
            {
                double old_af = af;
                double f      = (MMath.GammaLn(af + bf) - MMath.GammaLn(af + bf + a + b)) + (MMath.GammaLn(af + a) - MMath.GammaLn(af)) +
                                (MMath.GammaLn(bf + b) - MMath.GammaLn(bf));
                double g = (MMath.Digamma(af + bf) - MMath.Digamma(af + bf + a + b)) * invMean + (MMath.Digamma(af + a) - MMath.Digamma(af)) +
                           (MMath.Digamma(bf + b) - MMath.Digamma(bf)) * (invMean - 1);
                // fit a fcn of the form: s*log((af-af0)/(af+x)) + c
                // whose deriv is s/(af-af0) - s/(af+x)
                double s            = g / (1 / (af - af0) - 1 / (af + x));
                double c            = f - s * Math.Log((af - af0) / (af + x));
                bool   isIncreasing = (x > -af0);
                if ((!isIncreasing && c >= logZ) || (isIncreasing && c <= logZ))
                {
                    // the approximation doesn't fit; use Gauss-Newton instead
                    af += (logZ - f) / g;
                }
                else
                {
                    // now solve s*log((af-af0)/(af+x))+c = logz
                    // af-af0 = exp((logz-c)/s) (af+x)
                    af = af0 + (x + af0) / MMath.ExpMinus1((c - logZ) / s);
                    //if (af == af0)
                    //    throw new ArgumentException("logZ is out of range");
                }
                if (double.IsNaN(af))
                {
                    throw new InferRuntimeException("af is nan");
                }
                bf = (af + a) / mean - (af + a + b);
                if (Math.Abs(af - old_af) < 1e-8 || af == af0)
                {
                    break;
                }
                //if (iter == numIters-1)
                //    throw new Exception("not converging");
            }
            if (false)
            {
                // check that integrals are correct
                double f = (MMath.GammaLn(af + bf) - MMath.GammaLn(af + bf + a + b)) + (MMath.GammaLn(af + a) - MMath.GammaLn(af)) +
                           (MMath.GammaLn(bf + b) - MMath.GammaLn(bf));
                if (Math.Abs(f - logZ) > 1e-6)
                {
                    throw new InferRuntimeException("wrong f");
                }
                double f2 = (MMath.GammaLn(af + bf) - MMath.GammaLn(af + bf + a + b + 1)) + (MMath.GammaLn(af + a + 1) - MMath.GammaLn(af)) +
                            (MMath.GammaLn(bf + b) - MMath.GammaLn(bf));
                if (Math.Abs(f2 - (Math.Log(mean) + logZ)) > 1e-6)
                {
                    throw new InferRuntimeException("wrong f2");
                }
            }
            return(new Beta(af, bf));
        }
        /// <summary>
        /// Find a Beta distribution with given integral and mean times a Beta weight function.
        /// </summary>
        /// <param name="mean">The desired value of the mean</param>
        /// <param name="logZ">The desired value of the integral</param>
        /// <param name="a">trueCount-1 of the weight function</param>
        /// <param name="b">falseCount-1 of the weight function</param>
        /// <returns></returns>
        private static Beta BetaFromMeanAndIntegral(double mean, double logZ, double a, double b)
        {
            // The constraints are:
            // 1. int_p to_p(p) p^a (1-p)^b dp = exp(logZ)
            // 2. int_p to_p(p) p p^a (1-p)^b dp = mean*exp(logZ)
            // Let to_p(p) = Beta(p; af, bf)
            // The LHS of (1) is gamma(af+bf)/gamma(af+bf+a+b) gamma(af+a)/gamma(af) gamma(bf+b)/gamma(bf)
            // The LHS of (2) is gamma(af+bf)/gamma(af+bf+a+b+1) gamma(af+a+1)/gamma(af) gamma(bf+b)/gamma(bf)
            // The ratio of (2)/(1) is gamma(af+a+1)/gamma(af+a) gamma(af+bf+a+b)/gamma(af+bf+a+b+1) = (af+a)/(af+bf+a+b) = mean
            // Solving for bf gives bf = (af+a)/mean - (af+a+b).
            // To solve for af, we apply a generalized Newton algorithm to solve equation (1) with bf substituted.
            // af0 is the smallest value of af that ensures (af >= 0, bf >= 0).
            if (mean <= 0)
            {
                throw new ArgumentException("mean <= 0");
            }
            if (mean >= 1)
            {
                throw new ArgumentException("mean >= 1");
            }
            if (double.IsNaN(mean))
            {
                throw new ArgumentException("mean is NaN");
            }
            // bf = (af+bx)*(1-m)/m
            double bx = -(mean * (a + b) - a) / (1 - mean);
            // af0 is the lower bound for af
            // we need both af>0 and bf>0
            double af0     = Math.Max(0, -bx);
            double x       = Math.Max(0, bx);
            double af      = af0 + 1;      // initial guess for af
            double invMean = 1 / mean;
            double bf      = (af + a) * invMean - (af + a + b);

            for (int iter = 0; iter < 20; iter++)
            {
                double old_af = af;
                double f      = (MMath.GammaLn(af + bf) - MMath.GammaLn(af + bf + a + b)) + (MMath.GammaLn(af + a) - MMath.GammaLn(af)) + (MMath.GammaLn(bf + b) - MMath.GammaLn(bf));
                double g      = (MMath.Digamma(af + bf) - MMath.Digamma(af + bf + a + b)) * invMean + (MMath.Digamma(af + a) - MMath.Digamma(af)) + (MMath.Digamma(bf + b) - MMath.Digamma(bf)) * (invMean - 1);
                // fit a fcn of the form: s*log((af-af0)/(af+x)) + c
                // whose deriv is s/(af-af0) - s/(af+x)
                double s            = g / (1 / (af - af0) - 1 / (af + x));
                double c            = f - s * Math.Log((af - af0) / (af + x));
                bool   isIncreasing = (x > -af0);
                if ((!isIncreasing && c >= logZ) || (isIncreasing && c <= logZ))
                {
                    // the approximation doesn't fit; use Gauss-Newton instead
                    af += (logZ - f) / g;
                }
                else
                {
                    // now solve s*log((af-af0)/(af+x))+c = logz
                    // af-af0 = exp((logz-c)/s) (af+x)
                    af = af0 + (x + af0) / MMath.ExpMinus1((c - logZ) / s);
                    if (af == af0)
                    {
                        throw new ArgumentException("logZ is out of range");
                    }
                }
                if (double.IsNaN(af))
                {
                    throw new ApplicationException("af is nan");
                }
                bf = (af + a) / mean - (af + a + b);
                if (Math.Abs(af - old_af) < 1e-8)
                {
                    break;
                }
            }
            if (false)
            {
                // check that integrals are correct
                double f = (MMath.GammaLn(af + bf) - MMath.GammaLn(af + bf + a + b)) + (MMath.GammaLn(af + a) - MMath.GammaLn(af)) + (MMath.GammaLn(bf + b) - MMath.GammaLn(bf));
                if (Math.Abs(f - logZ) > 1e-6)
                {
                    throw new ApplicationException("wrong f");
                }
                double f2 = (MMath.GammaLn(af + bf) - MMath.GammaLn(af + bf + a + b + 1)) + (MMath.GammaLn(af + a + 1) - MMath.GammaLn(af)) + (MMath.GammaLn(bf + b) - MMath.GammaLn(bf));
                if (Math.Abs(f2 - (Math.Log(mean) + logZ)) > 1e-6)
                {
                    throw new ApplicationException("wrong f2");
                }
            }
            return(new Beta(af, bf));
        }