public void TestTrain() { var linearPerceptron = new LinearPerceptron(); var linearPerceptronParameter = new LinearPerceptronParameter(1, 0.1, 0.99, 0.2, 100); linearPerceptron.Train(iris.GetInstanceList(), linearPerceptronParameter); Assert.AreEqual(8.67, 100 * linearPerceptron.Test(iris.GetInstanceList()).GetErrorRate(), 0.01); linearPerceptronParameter = new LinearPerceptronParameter(1, 0.001, 0.99, 0.2, 100); linearPerceptron.Train(bupa.GetInstanceList(), linearPerceptronParameter); Assert.AreEqual(31.88, 100 * linearPerceptron.Test(bupa.GetInstanceList()).GetErrorRate(), 0.01); linearPerceptronParameter = new LinearPerceptronParameter(1, 0.1, 0.99, 0.2, 100); linearPerceptron.Train(dermatology.GetInstanceList(), linearPerceptronParameter); Assert.AreEqual(3.28, 100 * linearPerceptron.Test(dermatology.GetInstanceList()).GetErrorRate(), 0.01); }
public void TestLinearPerceptron() { var linearPerceptron = new LinearPerceptron(); var linearPerceptronParameter = new LinearPerceptronParameter(1, 0.1, 0.99, 0.2, 100); var discreteToIndexed = new DiscreteToIndexed(car); discreteToIndexed.Convert(); linearPerceptron.Train(car.GetInstanceList(), linearPerceptronParameter); Assert.AreEqual(8.80, 100 * linearPerceptron.Test(car.GetInstanceList()).GetErrorRate(), 0.01); discreteToIndexed = new DiscreteToIndexed(tictactoe); discreteToIndexed.Convert(); linearPerceptron.Train(tictactoe.GetInstanceList(), linearPerceptronParameter); Assert.AreEqual(1.67, 100 * linearPerceptron.Test(tictactoe.GetInstanceList()).GetErrorRate(), 0.01); }
public void TestLinearPerceptron() { var linearPerceptron = new LinearPerceptron(); var linearPerceptronParameter = new LinearPerceptronParameter(1, 0.1, 0.99, 0.2, 100); var normalize = new Normalize(iris); normalize.Convert(); linearPerceptron.Train(iris.GetInstanceList(), linearPerceptronParameter); Assert.AreEqual(2.67, 100 * linearPerceptron.Test(iris.GetInstanceList()).GetErrorRate(), 0.01); normalize = new Normalize(bupa); normalize.Convert(); linearPerceptron.Train(bupa.GetInstanceList(), linearPerceptronParameter); Assert.AreEqual(31.59, 100 * linearPerceptron.Test(bupa.GetInstanceList()).GetErrorRate(), 0.01); normalize = new Normalize(dermatology); normalize.Convert(); linearPerceptron.Train(dermatology.GetInstanceList(), linearPerceptronParameter); Assert.AreEqual(1.09, 100 * linearPerceptron.Test(dermatology.GetInstanceList()).GetErrorRate(), 0.01); }
public void TestLinearPerceptron() { var linearPerceptron = new LinearPerceptron(); var linearPerceptronParameter = new LinearPerceptronParameter(1, 0.1, 0.99, 0.2, 100); var pca = new Pca(iris); pca.Convert(); linearPerceptron.Train(iris.GetInstanceList(), linearPerceptronParameter); Assert.AreEqual(8.67, 100 * linearPerceptron.Test(iris.GetInstanceList()).GetErrorRate(), 0.01); linearPerceptronParameter = new LinearPerceptronParameter(1, 0.01, 0.99, 0.2, 100); pca = new Pca(bupa); pca.Convert(); linearPerceptron.Train(bupa.GetInstanceList(), linearPerceptronParameter); Assert.AreEqual(42.03, 100 * linearPerceptron.Test(bupa.GetInstanceList()).GetErrorRate(), 0.01); pca = new Pca(dermatology); pca.Convert(); linearPerceptron.Train(dermatology.GetInstanceList(), linearPerceptronParameter); Assert.AreEqual(1.64, 100 * linearPerceptron.Test(dermatology.GetInstanceList()).GetErrorRate(), 0.01); }