/// <summary> /// Creates a Kohonen layer with the specified size and topology /// </summary> /// <param name="size"> /// Size of the layer /// </param> /// <param name="topology"> /// Lattice topology of neurons /// </param> /// <exception cref="ArgumentException"> /// If layer width or layer height is not positive, or if <c>topology</c> is invalid /// </exception> public KohonenLayer(Size size, LatticeTopology topology) : this(size, new GaussianFunction(Math.Max(size.Width, size.Height) / 2), topology) { }
void Solve() { CrowNetP NetP = new CrowNetP(); if (netUP.netType == "som") { #region self organizing maps #region prepare and assign trainingSet.Clear(); int trainVectorDimension = 3; if (trainDataArePoints) { for (int i = 0; i < pointsList.Count; i++) { trainingSet.Add(new TrainingSample(new double[] { pointsList[i].Value.X, pointsList[i].Value.Y, pointsList[i].Value.Z })); } } else { trainVectorDimension = trainingVectorTree.Branches[0].Count; trainingSet = new TrainingSet(trainVectorDimension); for (int i = 0; i < trainingVectorTree.Branches.Count; i++) { double[] values = new double[trainVectorDimension]; for (int j = 0; j < trainVectorDimension; j++) { values[j] = trainingVectorTree.Branches[i][j].Value; } trainingSet.Add(new TrainingSample(values)); } } /// process /// start learning int learningRadius = Math.Max(layerWidth, layerHeight) / 2; INeighborhoodFunction neighborhoodFunction = new GaussianFunction(learningRadius, netUP.neighborDistance) as INeighborhoodFunction; if (neighborhood) { neighborhoodFunction = new MexicanHatFunction(learningRadius) as INeighborhoodFunction; } LatticeTopology topology = LatticeTopology.Rectangular; if (latticeTopology) { topology = LatticeTopology.Hexagonal; } KohonenLayer inputLayer = new KohonenLayer(trainVectorDimension); KohonenLayer outputLayer = new KohonenLayer(new Size(layerWidth, layerHeight), neighborhoodFunction, topology); KohonenConnector connector = new KohonenConnector(inputLayer, outputLayer); connector.Initializer = randomizer; outputLayer.SetLearningRate(learningRate, 0.05d); outputLayer.IsRowCircular = isCircularRows; outputLayer.IsColumnCircular = isCircularColumns; network = new KohonenNetwork(inputLayer, outputLayer); network.useRandomTrainingOrder = opt.UseRandomTraining; #endregion #region delegates network.BeginEpochEvent += new TrainingEpochEventHandler( delegate(object senderNetwork, TrainingEpochEventArgs args) { #region TrainingCycle if (network == null || !GO) { return; } int iPrev = layerWidth - 1; allValuesTree = new GH_Structure <GH_Number>(); for (int i = 0; i < layerWidth; i++) { for (int j = 0; j < layerHeight; j++) { IList <ISynapse> synapses = (network.OutputLayer as KohonenLayer)[i, j].SourceSynapses; double x = synapses[0].Weight; double y = synapses[1].Weight; double z = synapses[2].Weight; for (int k = 0; k < trainVectorDimension; k++) { allValuesTree.Append(new GH_Number(synapses[k].Weight), new GH_Path(i, j)); } rowX[j][i] = x; rowY[j][i] = y; rowZ[j][i] = z; columnX[i][j] = x; columnY[i][j] = y; columnZ[i][j] = z; if (j % 2 == 1) { hexagonalX[i][j] = x; hexagonalY[i][j] = y; hexagonalZ[i][j] = z; } else { hexagonalX[iPrev][j] = x; hexagonalY[iPrev][j] = y; hexagonalZ[iPrev][j] = z; } } iPrev = i; } if (isCircularRows) { for (int i = 0; i < layerHeight; i++) { rowX[i][layerWidth] = rowX[i][0]; rowY[i][layerWidth] = rowY[i][0]; rowZ[i][layerWidth] = rowZ[i][0]; } } if (isCircularColumns) { for (int i = 0; i < layerWidth; i++) { columnX[i][layerHeight] = columnX[i][0]; columnY[i][layerHeight] = columnY[i][0]; columnZ[i][layerHeight] = columnZ[i][0]; hexagonalX[i][layerHeight] = hexagonalX[i][0]; hexagonalY[i][layerHeight] = hexagonalY[i][0]; hexagonalZ[i][layerHeight] = hexagonalZ[i][0]; } } Array.Clear(isWinner, 0, layerHeight * layerWidth); #endregion NetP = new CrowNetP("som", layerWidth, layerHeight, isCircularRows, isCircularColumns, latticeTopology, neighborhood, isWinner, rowX, rowY, rowZ, columnX, columnY, columnZ, hexagonalX, hexagonalY, hexagonalZ, allValuesTree); counter++; }); network.EndSampleEvent += new TrainingSampleEventHandler( delegate(object senderNetwork, TrainingSampleEventArgs args) { isWinner[network.Winner.Coordinate.X, network.Winner.Coordinate.Y] = true; }); #endregion #endregion } network.Learn(trainingSet, cycles); }