public double GetOuputValue() { double sum = 0; for (int i = 0; i < InputSynapses.Count; i++) { sum += InputSynapses[i].Weight * InputSynapses[i].InputNeuron.Output; } return(Output = Sigmoid.Output(InputSynapses.Sum(a => a.Weight * a.InputNeuron.Output) + BiasWeight)); }
public float CalculateValue() { /*for (int i = 0; i < InputSynapses.Count; i++) * { * xSum += InputSynapses[i].Weight * InputSynapses[i].InputNeuron.Value; * } ****** é o mesmo que fazer o Sum do LINQ */ float xSum = InputSynapses.Sum(x => x.Weight * x.InputNeuron.Value); float u = xSum + Bias; Value = Sigmoid.Output(u); return(Value); }
public virtual double CalculateValue() { return(Value = Sigmoid.Output(InputSynapses.Sum(a => a.Weight * a.InputNeuron.Value) + Bias)); }
public virtual double CalculateValue() //This function is used in forward propogation process. { return(Value = Sigmoid.Output(InputSynapses.Sum(a => a.Weight * a.InputNeuron.Value) + Bias)); //Calculate by ably activation function to (weight*input)+bias }
public virtual void CalculateValue() => Value = Activation(InputSynapses.Sum(synapse => synapse.Weight * synapse.InputNeuron.Value));
public virtual double CalculateValue() { var d = InputSynapses.Sum(a => a.Weight * a.InputNeuron.Value); // + Bias; return(Value = IsHidden ? NeuralNetwork.SigmoidFunction(d) : NeuralNetwork.IdentityFunction(d)); }
public void CalculateValueRecurrent() { OutputValue = Sigmoid.Output(InputSynapses.Sum(syn => syn.Weight * syn.InputNeuron.LastValue) + Bias); }
public float CalculateValue() { return(Value = Sigmoid.Output(InputSynapses.Sum(x => x.Weight * x.InputNeuron.Value) + Bias)); }
public virtual double CalculateHiddenValue() { return(Value = Sigmoid.Relu(InputSynapses.Sum(a => a.Weight * a.InputNeuron.Value))); }
public virtual double CalculateValue() { var inputSignals = InputSynapses.Sum(a => a.Weight * a.InputNeuron.Value); return(Value = ActivationFunction.Output(inputSignals + Bias)); }
/// <summary> /// Calculate the value of the neuron based on the weights and values of the Previous Layer /// VALUE = SIGMOIDSQUISH(WEIGHT * VALUE) of every previous neuron + bias /// </summary> /// <returns></returns> public float CalculateValue() { return(Value = NeuralMath.SigmoidSquish(InputSynapses.Sum(s => s.Weight * s.InputNeuron.Value) + Bias)); }
//计算输出值 ,输入值加上偏置,然后应用sigmoid函数 public virtual double CalculateValue() { this.InputValue = InputSynapses.Sum(a => a.Weight * a.InputNeuron.OutputValue); return(OutputValue = Sigmoid.Output(InputValue + Bias)); }
public virtual double CalculateValue() { return(Value = NeuralNetwork.SigmoidFunction(InputSynapses.Sum(a => a.Weight * a.InputNeuron.Value) + Bias)); }