Ejemplo n.º 1
0
        public double GetOuputValue()
        {
            double sum = 0;

            for (int i = 0; i < InputSynapses.Count; i++)
            {
                sum += InputSynapses[i].Weight * InputSynapses[i].InputNeuron.Output;
            }
            return(Output = Sigmoid.Output(InputSynapses.Sum(a => a.Weight * a.InputNeuron.Output) + BiasWeight));
        }
Ejemplo n.º 2
0
    public float CalculateValue()
    {
        /*for (int i = 0; i < InputSynapses.Count; i++)
         * {
         *  xSum += InputSynapses[i].Weight * InputSynapses[i].InputNeuron.Value;
         * }
         ****** é o mesmo que fazer o Sum do LINQ
         */

        float xSum = InputSynapses.Sum(x => x.Weight * x.InputNeuron.Value);
        float u    = xSum + Bias;

        Value = Sigmoid.Output(u);

        return(Value);
    }
Ejemplo n.º 3
0
 public virtual double CalculateValue()
 {
     return(Value = Sigmoid.Output(InputSynapses.Sum(a => a.Weight * a.InputNeuron.Value) + Bias));
 }
Ejemplo n.º 4
0
 public virtual double CalculateValue()                                                             //This function is used in forward propogation process.
 {
     return(Value = Sigmoid.Output(InputSynapses.Sum(a => a.Weight * a.InputNeuron.Value) + Bias)); //Calculate by ably activation function to (weight*input)+bias
 }
Ejemplo n.º 5
0
Archivo: Neuron.cs Proyecto: dm-j/nn
 public virtual void CalculateValue() =>
 Value = Activation(InputSynapses.Sum(synapse => synapse.Weight * synapse.InputNeuron.Value));
        public virtual double CalculateValue()
        {
            var d = InputSynapses.Sum(a => a.Weight * a.InputNeuron.Value);    // + Bias;

            return(Value = IsHidden ? NeuralNetwork.SigmoidFunction(d) : NeuralNetwork.IdentityFunction(d));
        }
Ejemplo n.º 7
0
 public void CalculateValueRecurrent()
 {
     OutputValue = Sigmoid.Output(InputSynapses.Sum(syn => syn.Weight * syn.InputNeuron.LastValue) + Bias);
 }
Ejemplo n.º 8
0
 public float CalculateValue()
 {
     return(Value = Sigmoid.Output(InputSynapses.Sum(x => x.Weight * x.InputNeuron.Value) + Bias));
 }
Ejemplo n.º 9
0
 public virtual double CalculateHiddenValue()
 {
     return(Value = Sigmoid.Relu(InputSynapses.Sum(a => a.Weight * a.InputNeuron.Value)));
 }
Ejemplo n.º 10
0
        public virtual double CalculateValue()
        {
            var inputSignals = InputSynapses.Sum(a => a.Weight * a.InputNeuron.Value);

            return(Value = ActivationFunction.Output(inputSignals + Bias));
        }
Ejemplo n.º 11
0
 /// <summary>
 /// Calculate the value of the neuron based on the weights and values of the Previous Layer
 /// VALUE = SIGMOIDSQUISH(WEIGHT * VALUE) of every previous neuron + bias
 /// </summary>
 /// <returns></returns>
 public float CalculateValue()
 {
     return(Value = NeuralMath.SigmoidSquish(InputSynapses.Sum(s => s.Weight * s.InputNeuron.Value) + Bias));
 }
Ejemplo n.º 12
0
 //计算输出值 ,输入值加上偏置,然后应用sigmoid函数
 public virtual double CalculateValue()
 {
     this.InputValue = InputSynapses.Sum(a => a.Weight * a.InputNeuron.OutputValue);
     return(OutputValue = Sigmoid.Output(InputValue + Bias));
 }
Ejemplo n.º 13
0
 public virtual double CalculateValue()
 {
     return(Value = NeuralNetwork.SigmoidFunction(InputSynapses.Sum(a => a.Weight * a.InputNeuron.Value) + Bias));
 }