Esempio n. 1
0
        static void Main(string[] args)
        {
            FolderBrowserDialog fbd = new FolderBrowserDialog();

            string allImagesTesting = "";

            if (fbd.ShowDialog() == DialogResult.OK)
            {
                allImagesTesting = fbd.SelectedPath;
            }

            string protoTxtPath = Path.Combine(AppDomain.CurrentDomain.BaseDirectory, "deploy.prototxt");
            string mdlBinPath   = Path.Combine(AppDomain.CurrentDomain.BaseDirectory, "resnet_50_1by2_nsfw.caffemodel");

            var classifier = new ImageClassifier(protoTxtPath, mdlBinPath);

            Console.WriteLine("Loaded classifier.");
            Console.WriteLine("Classifier has cutoff of {0}.", classifier.Cutoff);

            /*
             * string badImagesTesting = @"E:\img_malas";
             * string goodImagesTesting = @"E:\img_buenas";
             * string allImagesTesting = @"G:\Temp\$Temp\pics";
             */

            //string allImagesTesting = @"G:\Temp\$Temp\pics";


            //classifier.Cutoff = 0.15;

            //var badImgs = Directory.GetFiles(badImagesTesting).ToList();
            //var goodImgs = Directory.GetFiles(goodImagesTesting).ToList();

            //Esto lista todas las .jpg en la carpeta seleccionada y todas sus subcarpetas
            var allImgs = Directory.GetFiles(allImagesTesting, "*.jpg", SearchOption.AllDirectories).ToList();
            var total   = allImgs.Count;

            //Creo subcarpeta para mover los falsos negativos
            Directory.CreateDirectory(Path.Combine(allImagesTesting, "wrong"));

            // Cut down our test base so it's not so huge.

            /*
             * var min = Math.Min(badImgs.Count, goodImgs.Count);
             *
             * if(min > 1000)
             * {
             *  min = 1000;
             * }
             *
             * badImgs = badImgs.GetRange(0, min);
             * goodImgs = goodImgs.GetRange(0, min);
             *
             *
             * // Shuffle things up a bit.
             * Random r = new Random();
             * badImgs = badImgs.OrderBy(x => r.Next()).ToList();
             * goodImgs = goodImgs.OrderBy(x => r.Next()).ToList();
             */

            int goodRight = 0, goodWrong = 0, badRight = 0, badWrong = 0;

            var sw = new Stopwatch();

            sw.Start();


            foreach (var img in allImgs)
            {
                var imgData = File.ReadAllBytes(img);

                if (classifier.ClassifyImage(imgData))
                {
                    ++badRight;
                }
                else
                {
                    // If you feel like inspecting false negatives.

                    var outPath = Path.Combine(allImagesTesting, "wrong", Path.GetFileName(img));
                    //File.Move(img, outPath);
                    File.Copy(img, outPath);
                    ++badWrong;
                }

                //Publica avance cada 10 imágenes procesadas
                if ((badRight + badWrong) % 10 == 0)
                {
                    Console.WriteLine("Classified {0} of {1} bad images.", badRight + badWrong, total);
                }
            }


            /*
             *
             * foreach(var img in badImgs)
             * {
             *  var imgData = File.ReadAllBytes(img);
             *
             *  if(classifier.ClassifyImage(imgData))
             *  {
             ++badRight;
             *  }
             *  else
             *  {
             *      // If you feel like inspecting false negatives.
             *      // var outPath = Path.Combine(SOME_BASE_PATH_FOR_FALSE_NEGATIVES, Path.GetFileName(img));
             *      // File.Move(img, outPath);
             *      var outPath = Path.Combine(badImagesTesting,"wrong", Path.GetFileName(img));
             *      File.Move(img, outPath);
             ++badWrong;
             *  }
             *
             *  if((badRight + badWrong) % 10 == 0)
             *  {
             *      Console.WriteLine("Classified {0} of {1} bad images.", badRight + badWrong, min);
             *  }
             * }
             *
             * foreach(var img in goodImgs)
             * {
             *  var imgData = File.ReadAllBytes(img);
             *
             *  if(classifier.ClassifyImage(imgData))
             *  {
             ++goodWrong;
             *  }
             *  else
             *  {
             ++goodRight;
             *  }
             *
             *  if((goodWrong + goodRight) % 10 == 0)
             *  {
             *      Console.WriteLine("Classified {0} of {1} good images.", goodWrong + goodRight, min);
             *  }
             * }
             *
             */

            sw.Stop();

            Console.WriteLine("Classified pornographic images with an accuracy of {0}%.", 100d * ((double)badRight / (double)(badRight + badWrong)));

            Console.WriteLine("Classified non-pornographic images with an accuracy of {0}%.", 100d * ((double)goodRight / (double)(goodRight + goodWrong)));

            //Console.WriteLine("Took an average of {0} msec per image to classify.", sw.ElapsedMilliseconds / (double)(min * 2));
            Console.WriteLine("Took an average of {0} msec per image to classify.", sw.ElapsedMilliseconds / (double)(total));

            Console.ReadLine(); //Pausa para que no cierre consola
        }
Esempio n. 2
0
        private static void TestClassifier(ImageClassifier classifier, ClassifierType type, bool verbose = false)
        {
            Console.WriteLine("{0} classifier has cutoff of {1}.", type, classifier.Cutoff);

            string badImagesTesting  = @"SOME BAD STUFF BRO";
            string goodImagesTesting = @"SOME GOOD STUFF KIDDO";

            var badImgs  = Directory.GetFiles(badImagesTesting, "*.jpg", SearchOption.AllDirectories).ToList();
            var goodImgs = Directory.GetFiles(goodImagesTesting, "*.jpg", SearchOption.AllDirectories).ToList();

            // Cut down our test base so it's not so huge.
            var min = Math.Min(badImgs.Count, goodImgs.Count);

            if (min > 1000)
            {
                min = 1000;
            }

            Console.WriteLine("Testing against a total of {0} images, {1} from each class.", min * 2, min);

            badImgs  = badImgs.GetRange(0, min);
            goodImgs = goodImgs.GetRange(0, min);

            // Shuffle things up a bit.
            Random r = new Random();

            badImgs  = badImgs.OrderBy(x => r.Next()).ToList();
            goodImgs = goodImgs.OrderBy(x => r.Next()).ToList();

            int goodRight = 0, goodWrong = 0, badRight = 0, badWrong = 0;

            var sw = new Stopwatch();

            sw.Start();

            foreach (var img in badImgs)
            {
                var imgData = File.ReadAllBytes(img);

                if (classifier.ClassifyImage(imgData))
                {
                    ++badRight;
                }
                else
                {
                    // If you feel like inspecting false negatives.
                    //var outPath = Path.Combine(SOME PLACE FOR FALSE NEGATIVES, Path.GetFileName(img));
                    //File.Move(img, outPath);
                    ++badWrong;
                }

                if (verbose && (badRight + badWrong) % 10 == 0)
                {
                    Console.WriteLine("Classified {0} of {1} bad images.", badRight + badWrong, min);
                }
            }

            foreach (var img in goodImgs)
            {
                var imgData = File.ReadAllBytes(img);

                if (classifier.ClassifyImage(imgData))
                {
                    ++goodWrong;
                }
                else
                {
                    ++goodRight;
                }

                if (verbose && (goodWrong + goodRight) % 10 == 0)
                {
                    Console.WriteLine("Classified {0} of {1} good images.", goodWrong + goodRight, min);
                }
            }

            sw.Stop();

            Console.WriteLine("Classifier with type {0} classified pornographic images with an accuracy of {1}%.", type, 100d * ((double)badRight / (double)(badRight + badWrong)));

            Console.WriteLine("Classifier with type {0} classified non-pornographic images with an accuracy of {1}%.", type, 100d * ((double)goodRight / (double)(goodRight + goodWrong)));

            Console.WriteLine("Classifier with type {0} took an average of {1} msec per image to classify.", type, sw.ElapsedMilliseconds / (double)(min * 2));
        }
Esempio n. 3
0
        private static void RunClassifier(ImageClassifier classifier, string ClassifierPath,
                                          bool classifyPorn = true, bool verbose = false, bool copyWrongs = false, string wrongsPath = "", double cutoff = 0)
        {
            //cutoff = 2 --> usar default
            if (cutoff != 2)
            {
                classifier.Cutoff = cutoff;
            }


            Console.WriteLine("Classifier has cutoff of {0}.", classifier.Cutoff);

            //REVISAR  falla al encontrar directorios con acceso denegado (ej. SVI ó RECYCLE.BIN)
            // Y es lento para grandes tamaños, ver exploración recursiva y EnumerateFiles en su lugar
            //var allImgs = Directory.GetFiles(ClassifierPath, "*.jpg", SearchOption.AllDirectories).ToList();

            //var allImgs = Directory.GetFiles(ClassifierPath, "*.png", SearchOption.AllDirectories).ToList();


            //var allImgs = Directory.GetFiles(ClassifierPath, "*.jpg").ToList();
            var  allImgs = Directory.GetFiles(ClassifierPath).ToList();
            var  total   = allImgs.Count;
            bool tPorn   = classifyPorn;

            Console.WriteLine("{0} imágenes a clasificar.", total);


            int imgRight = 0, imgWrong = 0;

            var sw = new Stopwatch();

            sw.Start();

            foreach (var img in allImgs)
            {
                var imgData = File.ReadAllBytes(img);


                var outPath = Path.Combine(wrongsPath, Path.GetFileName(img));
                //var outPath = Path.Combine(@"D:\img_wrong", Path.GetFileName(img).Replace(".png", "_" + ctStr + score.ToString("F6") + ".png")); //Path.Combine(img, "wrong", Path.GetFileName(img));

                try
                {
                    if (classifier.ClassifyImage(imgData))
                    {
                        if (tPorn)
                        {
                            ++imgRight;
                        }
                        else
                        {
                            ++imgWrong;
                            if (copyWrongs)
                            {
                                File.Copy(img, outPath);
                            }
                        }
                    }
                    else
                    {
                        // If you feel like inspecting false negatives.
                        //var outPath = Path.Combine(SOME PLACE FOR FALSE NEGATIVES, Path.GetFileName(img));
                        //File.Move(img, outPath);

                        //var outPath = Path.Combine(img, "wrong", Path.GetFileName(img));
                        //File.Copy(img, outPath);

                        if (tPorn)
                        {
                            ++imgWrong;
                            //if (verbose) Console.WriteLine("score: {0}", classifier.GetPositiveProbability(imgData));
                            if (copyWrongs)
                            {
                                File.Copy(img, outPath);
                            }
                        }
                        else
                        {
                            ++imgRight;
                        }
                    }

                    if (verbose && (imgRight + imgWrong) % 100 == 0)
                    {
                        if (tPorn)
                        {
                            Console.WriteLine("Classified {0} of {1} pornographic images.", imgRight + imgWrong, total);
                        }
                        else
                        {
                            Console.WriteLine("Classified {0} of {1} non-pornographic images.", imgRight + imgWrong, total);
                        }
                    }

                    //Console.WriteLine("score: {0}", score);
                }
                catch (Exception e)
                {
                    // Extract some information from this exception, and then
                    // throw it to the parent method.
                    if (e.Source != null)
                    {
                        Console.WriteLine("Exception source: {0}", e.Source);
                    }
                    throw;
                }
            }



            sw.Stop();

            if (tPorn)
            {
                Console.WriteLine("Classified {0} pornographic images with an accuracy of {1}%.", imgRight + imgWrong, 100d * ((double)imgRight / (double)(imgRight + imgWrong)));
            }
            else
            {
                Console.WriteLine("Classified {0} non-pornographic images with an accuracy of {1}%.", imgRight + imgWrong, 100d * ((double)imgRight / (double)(imgRight + imgWrong)));
            }

            Console.WriteLine("Classifier took an average of {0} msec per image to classify.", sw.ElapsedMilliseconds / (double)(total * 2));
        }
Esempio n. 4
0
        static void Main(string[] args)
        {
            string protoTxtPath = Path.Combine(AppDomain.CurrentDomain.BaseDirectory, "deploy.prototxt");
            string mdlBinPath   = Path.Combine(AppDomain.CurrentDomain.BaseDirectory, "resnet_50_1by2_nsfw.caffemodel");

            var classifier = new ImageClassifier(protoTxtPath, mdlBinPath);

            Console.WriteLine("Loaded classifier.");
            Console.WriteLine("Classifier has cutoff of {0}.", classifier.Cutoff);

            //string badImagesTesting = PATH_TO_BAD_IMAGES;
            //string goodImagesTesting = PATH_TO_GOOD_IMAGES;
            string badImagesTesting  = @"E:\img_malas";
            string goodImagesTesting = @"E:\img_malas";

            var badImgs  = Directory.GetFiles(badImagesTesting).ToList();
            var goodImgs = Directory.GetFiles(goodImagesTesting).ToList();

            // Cut down our test base so it's not so huge.
            var min = Math.Min(badImgs.Count, goodImgs.Count);

            if (min > 1000)
            {
                min = 1000;
            }

            badImgs  = badImgs.GetRange(0, min);
            goodImgs = goodImgs.GetRange(0, min);

            // Shuffle things up a bit.
            Random r = new Random();

            badImgs  = badImgs.OrderBy(x => r.Next()).ToList();
            goodImgs = goodImgs.OrderBy(x => r.Next()).ToList();

            int goodRight = 0, goodWrong = 0, badRight = 0, badWrong = 0;

            var sw = new Stopwatch();

            sw.Start();

            foreach (var img in badImgs)
            {
                var imgData = File.ReadAllBytes(img);

                if (classifier.ClassifyImage(imgData))
                {
                    ++badRight;
                }
                else
                {
                    // If you feel like inspecting false negatives.
                    // var outPath = Path.Combine(SOME_BASE_PATH_FOR_FALSE_NEGATIVES, Path.GetFileName(img));
                    // File.Move(img, outPath);
                    ++badWrong;
                }

                if ((badRight + badWrong) % 10 == 0)
                {
                    Console.WriteLine("Classified {0} of {1} bad images.", badRight + badWrong, min);
                }
            }

            foreach (var img in goodImgs)
            {
                var imgData = File.ReadAllBytes(img);

                if (classifier.ClassifyImage(imgData))
                {
                    ++goodWrong;
                }
                else
                {
                    ++goodRight;
                }

                if ((goodWrong + goodRight) % 10 == 0)
                {
                    Console.WriteLine("Classified {0} of {1} good images.", goodWrong + goodRight, min);
                }
            }

            sw.Stop();

            Console.WriteLine("Classified pornographic images with an accuracy of {0}%.", 100d * ((double)badRight / (double)(badRight + badWrong)));

            Console.WriteLine("Classified non-pornographic images with an accuracy of {0}%.", 100d * ((double)goodRight / (double)(goodRight + goodWrong)));

            Console.WriteLine("Took an average of {0} msec per image to classify.", sw.ElapsedMilliseconds / (double)(min * 2));

            //Console.WriteLine("min = {0}", min);

            Console.ReadLine();
        }