private ClassificationResults UseClassifier(Image frame)
        {
            var classificationResults = frame != null?_classifier?.Classify(frame.CloneAs <Rgb24>()) : null;

            var results = classificationResults?.Prediction?.Confidence > Threshold ? classificationResults : null;

            return(results);
        }
Esempio n. 2
0
        public static Bitmap CustomRun(string path)
        {
            string classificationResult = imageClassifier.Classify(new Bitmap(path));
            string fileName             = Path.GetFileNameWithoutExtension(path);

            string[] nameParts = fileName.Split(new[] { "_" }, StringSplitOptions.RemoveEmptyEntries);
            fileName = nameParts[0];
            if (classificationResult.Equals(fileName, StringComparison.CurrentCulture))
            {
                return(BinaryTransformer.BoolToBitmap(imageClassifier.LastPattern));
            }

            return(new Bitmap(10, 10));
        }
Esempio n. 3
0
        public static string Run(string DataDirectoryName)
        {
            var statistics = new Dictionary <string, int>();

            IImageBinarizer binarizer     = new ImageBinarizer();
            var             directoryInfo = new DirectoryInfo(Environment.CurrentDirectory).Parent.Parent.Parent;
            var             path          = Path.Combine(directoryInfo.FullName, DataDirectoryName);

            directoryInfo = new DirectoryInfo(path);

            imageClassifier = new ImageClassifier(binarizer, Size * Size);
            //Train
            foreach (DirectoryInfo directory in directoryInfo.EnumerateDirectories())
            {
                foreach (var file in directory.EnumerateFiles("*.bmp"))
                {
                    string fileName = Path.GetFileNameWithoutExtension(file.FullName);
                    imageClassifier.Train(new ImageUnit {
                        Id = fileName, Image = new Bitmap(file.FullName)
                    });
                }
            }

            foreach (DirectoryInfo directory in directoryInfo.EnumerateDirectories())
            {
                foreach (var file in directory.EnumerateFiles("*.bmp"))
                {
                    string fileName         = Path.GetFileNameWithoutExtension(file.FullName);
                    var    patternDirectory = directory.EnumerateDirectories().FirstOrDefault(p => p.Name == ("Randomized_" + fileName));
                    foreach (var patternFile in patternDirectory.EnumerateFiles("*.bmp"))
                    {
                        string   patternFileName = Path.GetFileNameWithoutExtension(patternFile.FullName);
                        string[] nameParts       = patternFileName.Split(new[] { "_" }, StringSplitOptions.RemoveEmptyEntries);
                        string   percentValue    = nameParts[1];
                        if (statistics.ContainsKey(percentValue) == false)
                        {
                            statistics.Add(percentValue, 0);
                        }
                        string classificationResult = imageClassifier.Classify(new Bitmap(patternFile.FullName));
                        if (classificationResult.Equals(fileName, StringComparison.CurrentCulture))
                        {
                            statistics[percentValue] += 1;
                        }
                    }
                }
            }

            return(statistics.Aggregate("Classification result: \n\n", (current, statistic) => current + String.Format("Noise percent: {0}\n Matched: {1}\n\n", statistic.Key, statistic.Value)));
        }
 public static ClassificationResults Classify <TPixel>(this ImageClassifier classifier,
                                                       Image <TPixel> image) where TPixel : unmanaged, IPixel <TPixel>
 {
     return(classifier.Classify(image.ToFlatArrayMatchingInputShape(classifier.Signature, "Image")));
 }
Esempio n. 5
0
        static void Main(string[] args)
        {
            //LogEvents.Subscribe(i =>
            //{
            //    i.Operation.Id = "";
            //    Console.WriteLine(i.ToLogString());
            //}, new[]
            //{
            //    typeof(PiTop4Board).Assembly,
            //    typeof(FoundationPlate).Assembly,
            //    typeof(ExpansionPlate).Assembly,
            //    typeof(RoverRobot).Assembly,
            //    typeof(StreamingCamera).Assembly,
            //    typeof(Program).Assembly,
            //});

            ImageClassifier.Register("onnx", () => new OnnxImageClassifier());
            ImageClassifier classifier = null;
            var             js         = new XBoxController();

            // using ` mjpg_streamer -i "input_uvc.so -d /dev/video0" -o output_http.so`
            // ==> http://pi-top.local:8080/?action=stream
            PiTop4Board.Instance.UseCamera();
            using var rover = new RoverRobot(PiTop4Board.Instance.GetOrCreateExpansionPlate(), PiTop4Board.Instance.GetOrCreateCamera <StreamingCamera>(0),
                                             RoverRobotConfiguration.Default);
            var camControl   = rover.TiltController;
            var motorControl = rover.MotionComponent as SteeringMotorController;

            rover.AllLightsOn();
            rover.BlinkAllLights();

            Observable.Interval(TimeSpan.FromMilliseconds(10))
            .Select(_ => (X: js.LeftStick.X, Y: js.LeftStick.Y))
            .DistinctUntilChanged()
            .Subscribe(stick =>
            {
                var left    = stick.X.WithDeadZone(-.5, .5, .3);
                var forward = stick.Y;
                motorControl.SetPower((forward + left) / 1.5, (forward - left) / 1.5);
            });

            js.Events.OfType <ButtonEvent>().Where(e => e.Button == Button.A)
            .Subscribe(e =>
            {
                if (e.Pressed)
                {
                    rover.AllLightsOn();
                }
                else
                {
                    rover.AllLightsOff();
                }
            });

            js.Events.OfType <ButtonEvent>().Where(e => e.Button == Button.B && e.Pressed)
            .Subscribe(e =>
            {
                rover.Camera.GetFrame().Save("/home/pi/shot.jpg");
            });

            js.Events.OfType <ButtonEvent>().Where(e => e.Button == Button.Y && e.Pressed)
            .Subscribe(e =>
            {
                classifier?.Dispose();
                var signatureFile = new FileInfo("/home/pi/models/pics/signature.json");
                classifier        = ImageClassifier.CreateFromSignatureFile(signatureFile);
                Console.WriteLine($"Loaded model from {signatureFile.FullName}");
            });

            js.Events.OfType <ButtonEvent>().Where(e => e.Button == Button.X && e.Pressed)
            .Subscribe(e =>
            {
                var frame  = rover.Camera.GetFrame().Focus();
                var result = classifier?.Classify(frame.CloneAs <Rgb24>());
                if (result is { })
                {
                    Console.WriteLine($"{result.Prediction.Label}");
                }
            });
Esempio n. 6
0
 public static ClassificationResults Classify(this ImageClassifier classifier,
                                              Mat image)
 {
     return(classifier.Classify(image.ToFlatArrayMatchingInputShape(classifier.Signature, "Image")));
 }