Esempio n. 1
0
        public static double[] PriceDataFE_pred(Series <DateTime, double> input)
        {
            int shiftn = 0;

            var data = input.Shift(shiftn);

            var MA3  = data.Window(3).Select(x => x.Value.Mean());
            var MA5  = data.Window(5).Select(x => x.Value.Mean());
            var MA10 = data.Window(10).Select(x => x.Value.Mean());

            var dataMA3  = (data / MA3).Select(x => Math.Log(x.Value));
            var dataMA5  = (data / MA5).Select(x => Math.Log(x.Value));
            var dataMA10 = (data / MA10).Select(x => Math.Log(x.Value));

            var MA3MA5  = (MA3 / MA5).Select(x => Math.Log(x.Value));
            var MA3MA10 = (MA3 / MA10).Select(x => Math.Log(x.Value));
            var MA5MA10 = (MA5 / MA10).Select(x => Math.Log(x.Value));

            var MMP3  = data.Window(3).Select(x => Math.Log(x.Value.Max() / x.Value.Min()));
            var MMP5  = data.Window(5).Select(x => Math.Log(x.Value.Max() / x.Value.Min()));
            var MMP10 = data.Window(10).Select(x => Math.Log(x.Value.Max() / x.Value.Min()));

            string dataMA3column  = "PriceMA3" + Convert.ToString(shiftn);
            string dataMA5column  = "PriceMA5" + Convert.ToString(shiftn);
            string dataMA10column = "PriceMA10" + Convert.ToString(shiftn);

            string MA3MA5column  = "MA3MA5PRICE" + Convert.ToString(shiftn);
            string MA3MA10column = "MA3MA10PRICE" + Convert.ToString(shiftn);
            string MA5MA10column = "MA5MA10PRICE" + Convert.ToString(shiftn);

            string MMP3column  = "MMP3" + Convert.ToString(shiftn);
            string MMP5column  = "MMP5" + Convert.ToString(shiftn);
            string MMP10column = "MMP10" + Convert.ToString(shiftn);

            var Features = new FrameBuilder.Columns <DateTime, string> {
                { dataMA3column, dataMA3 },
                { dataMA5column, dataMA5 },
                { dataMA10column, dataMA10 },
                { MA3MA5column, MA3MA5 },
                { MA3MA10column, MA3MA10 },
                { MA5MA10column, MA5MA10 },
                { MMP3column, MMP3 },
                { MMP5column, MMP5 },
                { MMP10column, MMP10 }
            }.Frame;

            var row_length = Features.RowCount;
            var col_length = Features.ColumnCount;

            double[] delay_1 = Features.GetRowAt <double>(row_length - 1).Values.ToArray <double>();

            double[] features_pred = new double[col_length];

            for (int i = 0; i < col_length; i++)
            {
                features_pred[i] = delay_1[i];
            }

            return(features_pred);
        }
Esempio n. 2
0
        public static double[] Features_engineering_pred(Series <DateTime, double> input)
        {
            // Features engineering function for generating prediction input

            int shiftn = 0;

            var data = input.Shift(shiftn);

            var data2 = data.Select(x => Math.Pow(x.Value, 2));

            var MA3  = data.Window(3).Select(x => x.Value.Mean());
            var MA5  = data.Window(5).Select(x => x.Value.Mean());
            var MA10 = data.Window(10).Select(x => x.Value.Mean());

            var diffdataMA3  = (data / MA3).Select(x => x.Value - 1);
            var diffdataMA5  = (data / MA5).Select(x => x.Value - 1);
            var diffdataMA10 = (data / MA10).Select(x => x.Value - 1);

            var diffMA3MA5  = (MA3 / MA5).Select(x => x.Value - 1);
            var diffMA3MA10 = (MA3 / MA10).Select(x => x.Value - 1);
            var diffMA5MA10 = (MA5 / MA10).Select(x => x.Value - 1);

            var SD3  = data.Window(3).Select(x => x.Value.StdDev());
            var SD5  = data.Window(5).Select(x => x.Value.StdDev());
            var SD10 = data.Window(10).Select(x => x.Value.StdDev());

            var RSI3  = data.Window(3).Select(x => RSI_func(x, 3));
            var RSI5  = data.Window(5).Select(x => RSI_func(x, 5));
            var RSI10 = data.Window(10).Select(x => RSI_func(x, 10));

            var K3  = data.Window(3).Select(x => K_func(x, 3));
            var K5  = data.Window(5).Select(x => K_func(x, 5));
            var K10 = data.Window(10).Select(x => K_func(x, 10));

            string Returncolumn = "Return" + Convert.ToString(shiftn);
            string Powercolumn  = "Power" + Convert.ToString(shiftn);

            string MA3column  = "MA3" + Convert.ToString(shiftn);
            string MA5column  = "MA5" + Convert.ToString(shiftn);
            string MA10column = "MA10" + Convert.ToString(shiftn);

            string SD3column  = "SD3" + Convert.ToString(shiftn);
            string SD5column  = "SD5" + Convert.ToString(shiftn);
            string SD10column = "SD10" + Convert.ToString(shiftn);

            string CompareDataColumn1 = "dataMA3" + Convert.ToString(shiftn);
            string CompareDataColumn2 = "dataMA5" + Convert.ToString(shiftn);
            string CompareDataColumn3 = "dataMA10" + Convert.ToString(shiftn);

            string Compare1column = "MA3MA5" + Convert.ToString(shiftn);
            string Compare2column = "MA3MA10" + Convert.ToString(shiftn);
            string Compare3column = "MA5MA10" + Convert.ToString(shiftn);

            string RSI3column  = "RSI3" + Convert.ToString(shiftn);
            string RSI5column  = "RSI5" + Convert.ToString(shiftn);
            string RSI10column = "RSI10" + Convert.ToString(shiftn);

            string K3column  = "K3" + Convert.ToString(shiftn);
            string K5column  = "K5" + Convert.ToString(shiftn);
            string K10column = "K10" + Convert.ToString(shiftn);

            var Features = new FrameBuilder.Columns <DateTime, string> {
                { Returncolumn, data },
                { Powercolumn, data2 },
                { MA3column, MA3 },
                { MA5column, MA5 },
                { MA10column, MA10 },
                { Compare1column, diffMA3MA5 },
                { Compare2column, diffMA3MA10 },
                { Compare3column, diffMA5MA10 },
                { CompareDataColumn1, diffdataMA3 },
                { CompareDataColumn2, diffdataMA5 },
                { CompareDataColumn3, diffdataMA10 },
                { SD3column, SD3 },
                { SD5column, SD5 },
                { SD10column, SD10 },
                { RSI3column, RSI3 },
                { RSI5column, RSI5 },
                { RSI10column, RSI10 },
                { K3column, K3 },
                { K5column, K5 },
                { K10column, K10 }
            }.Frame;

            var row_length = Features.RowCount;
            var col_length = Features.ColumnCount;

            double[] delay_1 = Features.GetRowAt <double>(row_length - 1).Values.ToArray <double>();
            double[] delay_2 = Features.GetRowAt <double>(row_length - 2).Values.ToArray <double>();
            double[] delay_3 = Features.GetRowAt <double>(row_length - 3).Values.ToArray <double>();

            double[] features_pred = new double[col_length * 3];

            for (int i = 0; i < col_length; i++)
            {
                features_pred[i] = delay_1[i];
            }
            for (int i = 0; i < col_length; i++)
            {
                features_pred[i + col_length] = delay_2[i];
            }
            for (int i = 0; i < col_length; i++)
            {
                features_pred[i + col_length * 2] = delay_3[i];
            }

            return(features_pred);
        }