Esempio n. 1
0
        public override void SaveSummary(TextWriter writer, RoleMappedSchema schema)
        {
            var names = default(VBuffer <DvText>);

            MetadataUtils.GetSlotNames(schema, RoleMappedSchema.ColumnRole.Feature, Weight.Length, ref names);

            writer.WriteLine("Ordinary Least Squares Model Summary");
            writer.WriteLine("R-squared: {0:g4}", RSquared);

            if (HasStatistics)
            {
                writer.WriteLine("Adjusted R-squared: {0:g4}", RSquaredAdjusted);
                writer.WriteLine();
                writer.WriteLine("Index\tName\tWeight\tStdErr\tt-Value\tp-Value");
                const string format = "{0}\t{1}\t{2}\t{3:g4}\t{4:g4}\t{5:e4}";
                writer.WriteLine(format, "", "Bias", Bias, _standardErrors[0], _tValues[0], _pValues[0]);
                Contracts.Assert(Weight.IsDense);
                var coeffs = Weight.Values;
                for (int i = 0; i < coeffs.Length; i++)
                {
                    var name = names.GetItemOrDefault(i);
                    writer.WriteLine(format, i, DvText.Identical(name, DvText.Empty) ? $"f{i}" : name.ToString(),
                                     coeffs[i], _standardErrors[i + 1], _tValues[i + 1], _pValues[i + 1]);
                }
            }
            else
            {
                writer.WriteLine();
                writer.WriteLine("Index\tName\tWeight");
                const string format = "{0}\t{1}\t{2}";
                writer.WriteLine(format, "", "Bias", Bias);
                Contracts.Assert(Weight.IsDense);
                var coeffs = Weight.Values;
                for (int i = 0; i < coeffs.Length; i++)
                {
                    var name = names.GetItemOrDefault(i);
                    writer.WriteLine(format, i, DvText.Identical(name, DvText.Empty) ? $"f{i}" : name.ToString(), coeffs[i]);
                }
            }
        }
        public static IEnumerable <KeyValuePair <string, Single> > GetSortedLinearModelFeatureNamesAndWeights(Single bias,
                                                                                                              ref VBuffer <Single> weights, ref VBuffer <DvText> names)
        {
            var orderedWeights = weights.Items()
                                 .Where(weight => Math.Abs(weight.Value) >= Epsilon)
                                 .OrderByDescending(kv => Math.Abs(kv.Value));

            var list = new List <KeyValuePair <string, Single> >()
            {
                new KeyValuePair <string, Single>("(Bias)", bias)
            };

            foreach (var weight in orderedWeights)
            {
                int index = weight.Key;
                var name  = names.GetItemOrDefault(index);
                list.Add(new KeyValuePair <string, Single>(
                             DvText.Identical(name, DvText.Empty) ? $"f{index}" : name.ToString(), weight.Value));
            }

            return(list);
        }
        ///<inheritdoc/>
        public IList <KeyValuePair <string, object> > GetSummaryInKeyValuePairs(RoleMappedSchema schema)
        {
            Host.CheckValueOrNull(schema);

            List <KeyValuePair <string, object> > results = new List <KeyValuePair <string, object> >();

            var names = default(VBuffer <DvText>);

            MetadataUtils.GetSlotNames(schema, RoleMappedSchema.ColumnRole.Feature, _numFeatures, ref names);
            for (int classNumber = 0; classNumber < _biases.Length; classNumber++)
            {
                results.Add(new KeyValuePair <string, object>(
                                string.Format("{0}+(Bias)", GetLabelName(classNumber)),
                                _biases[classNumber]
                                ));
            }

            for (int classNumber = 0; classNumber < _weights.Length; classNumber++)
            {
                var orderedWeights = _weights[classNumber].Items().OrderByDescending(kv => Math.Abs(kv.Value));
                foreach (var weight in orderedWeights)
                {
                    var value = weight.Value;
                    if (value == 0)
                    {
                        break;
                    }
                    int index = weight.Key;
                    var name  = names.GetItemOrDefault(index);

                    results.Add(new KeyValuePair <string, object>(
                                    string.Format("{0}+{1}", GetLabelName(classNumber), DvText.Identical(name, DvText.Empty) ? $"f{index}" : name.ToString()),
                                    value
                                    ));
                }
            }

            return(results);
        }
        /// <summary>
        /// Build a Bing TreeEnsemble .ini representation of the given predictor
        /// </summary>
        public static string LinearModelAsIni(ref VBuffer <Float> weights, Float bias, IPredictor predictor = null,
                                              RoleMappedSchema schema = null, PlattCalibrator calibrator = null)
        {
            // TODO: Might need to consider a max line length for the Weights list, requiring us to split it up into
            //   multiple evaluators
            StringBuilder inputBuilder           = new StringBuilder();
            StringBuilder aggregatedNodesBuilder = new StringBuilder("Nodes=");
            StringBuilder weightsBuilder         = new StringBuilder("Weights=");

            var featureNames = default(VBuffer <DvText>);

            MetadataUtils.GetSlotNames(schema, RoleMappedSchema.ColumnRole.Feature, weights.Length, ref featureNames);

            int          numNonZeroWeights = 0;
            const string weightsSep        = "\t";

            VBufferUtils.ForEachDefined(ref weights,
                                        (idx, value) =>
            {
                if (Math.Abs(value - 0) >= Epsilon)
                {
                    numNonZeroWeights++;

                    var name = featureNames.GetItemOrDefault(idx);

                    inputBuilder.AppendLine("[Input:" + numNonZeroWeights + "]");
                    inputBuilder.AppendLine("Name=" + (featureNames.Count == 0 ? "Feature_" + idx : DvText.Identical(name, DvText.Empty) ? $"f{idx}" : name.ToString()));
                    inputBuilder.AppendLine("Transform=linear");
                    inputBuilder.AppendLine("Slope=1");
                    inputBuilder.AppendLine("Intercept=0");
                    inputBuilder.AppendLine();

                    aggregatedNodesBuilder.Append("I:" + numNonZeroWeights + weightsSep);
                    weightsBuilder.Append(value + weightsSep);
                }
            });

            StringBuilder builder = new StringBuilder();

            builder.AppendLine("[TreeEnsemble]");
            builder.AppendLine("Inputs=" + numNonZeroWeights);
            builder.AppendLine("Evaluators=1");
            builder.AppendLine();

            builder.AppendLine(inputBuilder.ToString());

            builder.AppendLine("[Evaluator:1]");
            builder.AppendLine("EvaluatorType=Aggregator");
            builder.AppendLine("Type=Linear");
            builder.AppendLine("Bias=" + bias);
            builder.AppendLine("NumNodes=" + numNonZeroWeights);
            builder.AppendLine(aggregatedNodesBuilder.ToString().Trim());
            builder.AppendLine(weightsBuilder.ToString().Trim());

#if false // REVIEW: This should be done by the caller using the actual training args!
            builder.AppendLine();
            builder.AppendLine("[Comments]");
            builder.Append("Trained by TLC");
            if (predictor != null)
            {
                builder.Append(" as /cl " + predictor.GetType().Name);
                if (predictor is IInitializable)
                {
                    string settings = string.Join(";", (predictor as IInitializable).GetSettings());
                    if (!string.IsNullOrEmpty(settings))
                    {
                        builder.Append(" /cls " + settings);
                    }
                }
            }
#endif

            string ini = builder.ToString();

            // Add the calibration if the model was trained with calibration
            if (calibrator != null)
            {
                string calibratorEvaluatorIni = IniFileUtils.GetCalibratorEvaluatorIni(ini, calibrator);
                ini = IniFileUtils.AddEvaluator(ini, calibratorEvaluatorIni);
            }
            return(ini);
        }