Esempio n. 1
0
        public Population(int count, IPopulationGenerator <T> generator, IFitnessEvaluator <T> evaluator)
        {
            if (count <= 0)
            {
                throw new ArgumentException($"{nameof(count)} must be greater than 0. Actual: {count}.");
            }

            if (generator == null)
            {
                throw new System.ArgumentNullException(nameof(generator));
            }

            if (evaluator == null)
            {
                throw new System.ArgumentNullException(nameof(evaluator));
            }

            TargetSize = count;

            // TODO: This really shouldn't be here. We should instead pass the
            // population
            for (var i = 0; i < count; i++)
            {
                var value      = generator.Generate();
                var fitness    = evaluator.ComputeFitness(value);
                var chromosome = new Chromosome <T>(value, fitness);

                Chromosomes.Add(chromosome);
            }
        }
Esempio n. 2
0
 public void Add(I interval, string chr, char strand)
 {
     if (!Chromosomes.ContainsKey(chr))
     {
         Chromosomes.Add(chr, new Chromosome <I, S>());
     }
     Chromosomes[chr].Add(interval, strand);
     Statistics.Update(interval);
 }
Esempio n. 3
0
        /// <summary>
        /// Create a NEAT gnome.
        /// </summary>
        ///
        /// <param name="genomeID">The genome id.</param>
        /// <param name="neurons">The neurons.</param>
        /// <param name="links">The links.</param>
        /// <param name="inputCount_0">The input count.</param>
        /// <param name="outputCount_1">The output count.</param>
        public NEATGenome(long genomeID, Chromosome neurons,
                          Chromosome links, int inputCount_0, int outputCount_1)
        {
            GenomeID          = genomeID;
            linksChromosome   = links;
            neuronsChromosome = neurons;
            AmountToSpawn     = 0;
            AdjustedScore     = 0;
            inputCount        = inputCount_0;
            outputCount       = outputCount_1;

            Chromosomes.Add(neuronsChromosome);
            Chromosomes.Add(linksChromosome);
        }
Esempio n. 4
0
        /// <summary>
        /// Construct a genome, do not provide links and neurons.
        /// </summary>
        ///
        /// <param name="id">The genome id.</param>
        /// <param name="inputCount_0">The input count.</param>
        /// <param name="outputCount_1">The output count.</param>
        public NEATGenome(long id, int inputCount_0, int outputCount_1)
        {
            GenomeID      = id;
            AdjustedScore = 0;
            inputCount    = inputCount_0;
            outputCount   = outputCount_1;
            AmountToSpawn = 0;
            speciesID     = 0;

            double inputRowSlice = 0.8d / (inputCount_0);

            neuronsChromosome = new Chromosome();
            linksChromosome   = new Chromosome();

            Chromosomes.Add(neuronsChromosome);
            Chromosomes.Add(linksChromosome);

            for (int i = 0; i < inputCount_0; i++)
            {
                neuronsChromosome.Add(new NEATNeuronGene(NEATNeuronType.Input,
                                                         i, 0, 0.1d + i * inputRowSlice));
            }

            neuronsChromosome.Add(new NEATNeuronGene(NEATNeuronType.Bias,
                                                     inputCount_0, 0, 0.9d));

            double outputRowSlice = 1 / (double)(outputCount_1 + 1);

            for (int i_2 = 0; i_2 < outputCount_1; i_2++)
            {
                neuronsChromosome.Add(new NEATNeuronGene(
                                          NEATNeuronType.Output, i_2 + inputCount_0 + 1, 1, (i_2 + 1)
                                          * outputRowSlice));
            }

            for (int i_3 = 0; i_3 < inputCount_0 + 1; i_3++)
            {
                for (int j = 0; j < outputCount_1; j++)
                {
                    linksChromosome.Add(new NEATLinkGene(
                                            ((NEATNeuronGene)neuronsChromosome.Get(i_3)).Id,
                                            ((NEATNeuronGene)Neurons.Get(
                                                 inputCount_0 + j + 1)).Id, true, inputCount_0
                                            + outputCount_1 + 1 + NumGenes,
                                            RangeRandomizer.Randomize(-1, 1), false));
                }
            }
        }
Esempio n. 5
0
 /// <summary>
 /// 初始化,设置染色体
 /// </summary>
 private static void Init()
 {
     Chromosomes.Clear();
     for (int i = 0; i < ChromosomeLength; i++)
     {
         int[,] valueLimit = new int[GenesLength, 2];
         for (int ii = 0; ii < GenesLength; ii++)
         {
             valueLimit[ii, 0] = variateInfo[ii].MinValue;
             valueLimit[ii, 1] = variateInfo[ii].MaxValue;
         }
         Chromosome chromosome = new Chromosome {
             ValueLimit = valueLimit,
         };
         chromosome.Genes = IniVariate(chromosome);
         Chromosomes.Add(chromosome);
     }
 }
Esempio n. 6
0
        /// <summary>
        /// Construct a genome by copying another.
        /// </summary>
        ///
        /// <param name="other">The other genome.</param>
        public NEATGenome(NEATGenome other)
        {
            neuronsChromosome = new Chromosome();
            linksChromosome   = new Chromosome();
            GA = other.GA;

            Chromosomes.Add(neuronsChromosome);
            Chromosomes.Add(linksChromosome);

            GenomeID      = other.GenomeID;
            networkDepth  = other.networkDepth;
            Population    = other.Population;
            Score         = other.Score;
            AdjustedScore = other.AdjustedScore;
            AmountToSpawn = other.AmountToSpawn;
            inputCount    = other.inputCount;
            outputCount   = other.outputCount;
            speciesID     = other.speciesID;


            // copy neurons
            foreach (IGene gene  in  other.Neurons.Genes)
            {
                var oldGene = (NEATNeuronGene)gene;
                var newGene = new NEATNeuronGene(
                    oldGene.NeuronType, oldGene.Id,
                    oldGene.SplitY, oldGene.SplitX,
                    oldGene.Recurrent, oldGene.ActivationResponse);
                Neurons.Add(newGene);
            }


            // copy links
            foreach (IGene gene_0  in  other.Links.Genes)
            {
                var oldGene_1 = (NEATLinkGene)gene_0;
                var newGene_2 = new NEATLinkGene(
                    oldGene_1.FromNeuronID, oldGene_1.ToNeuronID,
                    oldGene_1.Enabled, oldGene_1.InnovationId,
                    oldGene_1.Weight, oldGene_1.Recurrent);
                Links.Add(newGene_2);
            }
        }
        /// <summary>
        /// Construct a neural genome.
        /// </summary>
        ///
        /// <param name="network">The network to use.</param>
        public NeuralGenome(BasicNetwork network)
        {
            Organism = network;

            _networkChromosome = new Chromosome();

            // create an array of "double genes"
            int size = network.Structure.CalculateSize();

            for (int i = 0; i < size; i++)
            {
                IGene gene = new DoubleGene();
                _networkChromosome.Genes.Add(gene);
            }

            Chromosomes.Add(_networkChromosome);

            Encode();
        }
        public TSPGenome(GeneticAlgorithm owner, City[] cities)
        {
            var organism = new int[cities.Length];
            var taken    = new bool[cities.Length];

            for (int i = 0; i < organism.Length; i++)
            {
                taken[i] = false;
            }
            for (int i = 0; i < organism.Length - 1; i++)
            {
                int icandidate;
                do
                {
                    icandidate = (int)(ThreadSafeRandom.NextDouble() * organism.Length);
                } while (taken[icandidate]);
                organism[i]       = icandidate;
                taken[icandidate] = true;
                if (i == organism.Length - 2)
                {
                    icandidate = 0;
                    while (taken[icandidate])
                    {
                        icandidate++;
                    }
                    organism[i + 1] = icandidate;
                }
            }

            pathChromosome = new Chromosome();
            Chromosomes.Add(pathChromosome);

            for (int i = 0; i < organism.Length; i++)
            {
                var gene = new IntegerGene();
                gene.Value = organism[i];
                pathChromosome.Genes.Add(gene);
            }
            Organism = organism;

            Encode();
        }
Esempio n. 9
0
        //随机生成若干染色体
        public void RandomGenerateChromosome()
        {
            var rnd = new Random();

            for (var i = 0; i < ChromosomeQuantity; i++)
            {
                var chromosome = new Chromosome {
                    Population = this
                };
                var valueString = "";

                for (var k = 0; k < ChromosomeLength; k++)
                {
                    valueString += Convert.ToInt32(rnd.Next(0, 2)).ToString();
                }

                chromosome.Value = Convert.ToInt64(valueString, 2);
                Chromosomes.Add(chromosome);
            }
        }
Esempio n. 10
0
        public Population(int count, IPopulationGenerator <T> generator, IFitnessEvaluator <T> evaluator)
        {
            Contract.Requires <ArgumentOutOfRangeException>(count > 0);
            Contract.Requires <ArgumentNullException>(generator != null);
            Contract.Requires <ArgumentNullException>(evaluator != null);

            TargetSize = count;
            Evaluator  = evaluator;

            // TODO: This really shouldn't be here. We should instead pass the
            // population
            for (var i = 0; i < count; i++)
            {
                var value      = generator.Generate();
                var chromosome = new Chromosome <T>(value);
                chromosome.Fitness = evaluator.ComputeFitness(chromosome.Genes);

                Chromosomes.Add(chromosome);
            }
        }
Esempio n. 11
0
        public void NextGeneration(ISelection selectionScheme)
        {
            var selected = selectionScheme.Select(Chromosomes, 5).OrderByDescending(s => s.Cost).ToList();

            Chromosomes.Remove(selected[0]);
            Chromosomes.Remove(selected[1]);

            // fill the remaining empty space with children generated from selected chromosomes
            Chromosome parent1 = selected[3];
            Chromosome parent2 = selected[4];

            Chromosome child1 = OrderedCrossover.MakeChild(parent1, parent2);
            Chromosome child2 = OrderedCrossover.MakeChild(parent2, parent1);

            if (ThreadSafeRandom.CurrentThreadRandom.Next(100) < 3)
            {
                child1.Mutate();
            }
            if (ThreadSafeRandom.CurrentThreadRandom.Next(100) < 3)
            {
                child2.Mutate();
            }

            Chromosomes.Add(child1);
            Chromosomes.Add(child2);

            double currentTour = Chromosomes.Where(c => c.Cost > 0).Min(c => c.Cost);

            if (currentTour < BestTour)
            {
                BestTour = currentTour;
                Console.WriteLine("Generation " + currentGeneration + " Best: " + BestTour);
            }

            currentGeneration++;
        }
Esempio n. 12
0
 public void AddChromosome(T chromosome)
 {
     Chromosomes.Add(chromosome);
 }
Esempio n. 13
0
        public State <T> AddChromosome(Chromosome <T> chromosome)
        {
            var newChromosomes = Chromosomes.Add(chromosome).OrderByDescending(c => c.Fitness);

            return(new State <T>(newChromosomes));
        }
Esempio n. 14
0
        public void AddChromosome(Chromosome <T> chromosome)
        {
            Contract.Requires <ArgumentNullException>(chromosome != null, "Chromosome cannot be null.");

            Chromosomes.Add(chromosome);
        }