Exemple #1
0
        public static (Image[] Halves1, Image[] Halves2, float2[] Stats) TrainOnVolumes(NoiseNet3D network,
                                                                                        Image[] halves1,
                                                                                        Image[] halves2,
                                                                                        Image[] masks,
                                                                                        float angpix,
                                                                                        float lowpass,
                                                                                        float upsample,
                                                                                        bool dontFlatten,
                                                                                        bool performTraining,
                                                                                        int niterations,
                                                                                        float startFrom,
                                                                                        int batchsize,
                                                                                        int gpuprocess,
                                                                                        Action <string> progressCallback)
        {
            if (batchsize != 4)
            {
                niterations = niterations * 4 / batchsize;
                Debug.WriteLine($"Adjusting the number of iterations to {niterations} to match different batch size.\n");
            }

            GPU.SetDevice(gpuprocess);

            #region Mask

            Debug.Write("Preparing mask... ");
            progressCallback?.Invoke("Preparing mask... ");

            int3[] BoundingBox = Helper.ArrayOfFunction(i => new int3(-1), halves1.Length);
            if (masks != null)
            {
                for (int i = 0; i < masks.Length; i++)
                {
                    Image Mask = masks[i];

                    Mask.TransformValues((x, y, z, v) =>
                    {
                        if (v > 0.5f)
                        {
                            BoundingBox[i].X = Math.Max(BoundingBox[i].X, Math.Abs(x - Mask.Dims.X / 2) * 2);
                            BoundingBox[i].Y = Math.Max(BoundingBox[i].Y, Math.Abs(y - Mask.Dims.Y / 2) * 2);
                            BoundingBox[i].Z = Math.Max(BoundingBox[i].Z, Math.Abs(z - Mask.Dims.Z / 2) * 2);
                        }

                        return(v);
                    });

                    if (BoundingBox[i].X < 2)
                    {
                        throw new Exception("Mask does not seem to contain any non-zero values.");
                    }

                    BoundingBox[i] += 64;

                    BoundingBox[i].X = Math.Min(BoundingBox[i].X, Mask.Dims.X);
                    BoundingBox[i].Y = Math.Min(BoundingBox[i].Y, Mask.Dims.Y);
                    BoundingBox[i].Z = Math.Min(BoundingBox[i].Z, Mask.Dims.Z);
                }
            }

            Console.WriteLine("done.\n");

            #endregion

            #region Load and prepare data

            Console.WriteLine("Preparing data:");

            List <Image> Maps1 = new List <Image>();
            List <Image> Maps2 = new List <Image>();

            List <Image>  HalvesForDenoising1 = new List <Image>();
            List <Image>  HalvesForDenoising2 = new List <Image>();
            List <float2> StatsForDenoising   = new List <float2>();

            for (int imap = 0; imap < halves1.Length; imap++)
            {
                Debug.Write($"Preparing map {imap}... ");
                progressCallback?.Invoke($"Preparing map {imap}... ");

                Image Map1 = halves1[imap];
                Image Map2 = halves2[imap];

                float MapPixelSize = Map1.PixelSize / upsample;

                if (!dontFlatten)
                {
                    Image Average = Map1.GetCopy();
                    Average.Add(Map2);

                    if (masks != null)
                    {
                        Average.Multiply(masks[imap]);
                    }

                    float[] Spectrum = Average.AsAmplitudes1D(true, 1, (Average.Dims.X + Average.Dims.Y + Average.Dims.Z) / 6);
                    Average.Dispose();

                    int   i10A   = Math.Min((int)(angpix * 2 / 10 * Spectrum.Length), Spectrum.Length - 1);
                    float Amp10A = Spectrum[i10A];

                    for (int i = 0; i < Spectrum.Length; i++)
                    {
                        Spectrum[i] = i < i10A ? 1 : (Amp10A / Math.Max(1e-10f, Spectrum[i]));
                    }

                    Image Map1Flat = Map1.AsSpectrumMultiplied(true, Spectrum);
                    Map1.FreeDevice();
                    Map1 = Map1Flat;
                    Map1.FreeDevice();

                    Image Map2Flat = Map2.AsSpectrumMultiplied(true, Spectrum);
                    Map2.FreeDevice();
                    Map2 = Map2Flat;
                    Map2.FreeDevice();
                }

                if (lowpass > 0)
                {
                    Map1.Bandpass(0, angpix * 2 / lowpass, true, 0.01f);
                    Map2.Bandpass(0, angpix * 2 / lowpass, true, 0.01f);
                }

                if (upsample != 1f)
                {
                    Image Map1Scaled = Map1.AsScaled(Map1.Dims * upsample / 2 * 2);
                    Map1.FreeDevice();
                    Map1 = Map1Scaled;
                    Map1.FreeDevice();

                    Image Map2Scaled = Map2.AsScaled(Map2.Dims * upsample / 2 * 2);
                    Map2.FreeDevice();
                    Map2 = Map2Scaled;
                    Map2.FreeDevice();
                }

                Image ForDenoising1 = Map1.GetCopy();
                Image ForDenoising2 = Map2.GetCopy();

                if (BoundingBox[imap].X > 0)
                {
                    Image Map1Cropped = Map1.AsPadded(BoundingBox[imap]);
                    Map1.FreeDevice();
                    Map1 = Map1Cropped;
                    Map1.FreeDevice();

                    Image Map2Cropped = Map2.AsPadded(BoundingBox[imap]);
                    Map2.FreeDevice();
                    Map2 = Map2Cropped;
                    Map2.FreeDevice();
                }

                float2 MeanStd = MathHelper.MeanAndStd(Helper.Combine(Map1.GetHostContinuousCopy(), Map2.GetHostContinuousCopy()));

                Map1.TransformValues(v => (v - MeanStd.X) / MeanStd.Y);
                Map2.TransformValues(v => (v - MeanStd.X) / MeanStd.Y);

                ForDenoising1.TransformValues(v => (v - MeanStd.X) / MeanStd.Y);
                ForDenoising2.TransformValues(v => (v - MeanStd.X) / MeanStd.Y);

                HalvesForDenoising1.Add(ForDenoising1);
                HalvesForDenoising2.Add(ForDenoising2);
                StatsForDenoising.Add(MeanStd);

                GPU.PrefilterForCubic(Map1.GetDevice(Intent.ReadWrite), Map1.Dims);
                Map1.FreeDevice();
                Maps1.Add(Map1);

                GPU.PrefilterForCubic(Map2.GetDevice(Intent.ReadWrite), Map2.Dims);
                Map2.FreeDevice();
                Maps2.Add(Map2);

                Debug.WriteLine(" Done.");
            }

            if (masks != null)
            {
                foreach (var mask in masks)
                {
                    mask.FreeDevice();
                }
            }

            #endregion

            int Dim = network.BoxDimensions.X;

            progressCallback?.Invoke($"0/{niterations}");

            if (performTraining)
            {
                GPU.SetDevice(gpuprocess);

                #region Training

                Random Rand = new Random(123);

                int NMaps         = Maps1.Count;
                int NMapsPerBatch = Math.Min(128, NMaps);
                int MapSamples    = batchsize;

                Image[] ExtractedSource = Helper.ArrayOfFunction(i => new Image(new int3(Dim, Dim, Dim * MapSamples)), NMapsPerBatch);
                Image[] ExtractedTarget = Helper.ArrayOfFunction(i => new Image(new int3(Dim, Dim, Dim * MapSamples)), NMapsPerBatch);

                for (int iter = (int)(startFrom * niterations); iter < niterations; iter++)
                {
                    int[] ShuffledMapIDs = Helper.RandomSubset(Helper.ArrayOfSequence(0, NMaps, 1), NMapsPerBatch, Rand.Next(9999));

                    for (int m = 0; m < NMapsPerBatch; m++)
                    {
                        int MapID = ShuffledMapIDs[m];

                        Image Map1 = Maps1[MapID];
                        Image Map2 = Maps2[MapID];

                        int3 DimsMap = Map1.Dims;

                        int3 Margin = new int3((int)(Dim / 2 * 1.5f));
                        //Margin.Z = 0;
                        float3[] Position = Helper.ArrayOfFunction(i => new float3((float)Rand.NextDouble() * (DimsMap.X - Margin.X * 2) + Margin.X,
                                                                                   (float)Rand.NextDouble() * (DimsMap.Y - Margin.Y * 2) + Margin.Y,
                                                                                   (float)Rand.NextDouble() * (DimsMap.Z - Margin.Z * 2) + Margin.Z), MapSamples);

                        float3[] Angle = Helper.ArrayOfFunction(i => new float3((float)Rand.NextDouble() * 360,
                                                                                (float)Rand.NextDouble() * 360,
                                                                                (float)Rand.NextDouble() * 360) * Helper.ToRad, MapSamples);

                        {
                            ulong[] Texture = new ulong[1], TextureArray = new ulong[1];
                            GPU.CreateTexture3D(Map1.GetDevice(Intent.Read), Map1.Dims, Texture, TextureArray, true);
                            //Map1.FreeDevice();

                            GPU.Rotate3DExtractAt(Texture[0],
                                                  Map1.Dims,
                                                  ExtractedSource[m].GetDevice(Intent.Write),
                                                  new int3(Dim),
                                                  Helper.ToInterleaved(Angle),
                                                  Helper.ToInterleaved(Position),
                                                  (uint)MapSamples);

                            //ExtractedSource[MapID].WriteMRC("d_extractedsource.mrc", true);

                            GPU.DestroyTexture(Texture[0], TextureArray[0]);
                        }

                        {
                            ulong[] Texture = new ulong[1], TextureArray = new ulong[1];
                            GPU.CreateTexture3D(Map2.GetDevice(Intent.Read), Map2.Dims, Texture, TextureArray, true);
                            //Map2.FreeDevice();

                            GPU.Rotate3DExtractAt(Texture[0],
                                                  Map2.Dims,
                                                  ExtractedTarget[m].GetDevice(Intent.Write),
                                                  new int3(Dim),
                                                  Helper.ToInterleaved(Angle),
                                                  Helper.ToInterleaved(Position),
                                                  (uint)MapSamples);

                            //ExtractedTarget.WriteMRC("d_extractedtarget.mrc", true);

                            GPU.DestroyTexture(Texture[0], TextureArray[0]);
                        }

                        //Map1.FreeDevice();
                        //Map2.FreeDevice();
                    }

                    float[] PredictedData = null, Loss = null;

                    {
                        float CurrentLearningRate = 0.0001f * (float)Math.Pow(10, -iter / (float)niterations * 2);

                        for (int m = 0; m < ShuffledMapIDs.Length; m++)
                        {
                            int MapID = m;

                            bool Twist = Rand.Next(2) == 0;

                            if (Twist)
                            {
                                network.Train(ExtractedSource[MapID].GetDevice(Intent.Read),
                                              ExtractedTarget[MapID].GetDevice(Intent.Read),
                                              CurrentLearningRate,
                                              0,
                                              out PredictedData,
                                              out Loss);
                            }
                            else
                            {
                                network.Train(ExtractedTarget[MapID].GetDevice(Intent.Read),
                                              ExtractedSource[MapID].GetDevice(Intent.Read),
                                              CurrentLearningRate,
                                              0,
                                              out PredictedData,
                                              out Loss);
                            }
                        }
                    }

                    Debug.WriteLine($"{iter + 1}/{niterations}");
                    progressCallback?.Invoke($"{iter + 1}/{niterations}");
                }

                Debug.WriteLine("\nDone training!\n");

                #endregion
            }

            return(HalvesForDenoising1.ToArray(), HalvesForDenoising2.ToArray(), StatsForDenoising.ToArray());
        }