Exemple #1
0
		public override void step(Circuit sim) {
			double vc = lead_volt[3] - lead_volt[2];
			double vo = lead_volt[1];
			int dir = (vo < 2.5) ? 1 : -1;
			// switch direction of current through cap as we oscillate
			if (vo < 2.5 && vc > 4.5) {
				vo = 5;
				dir = -1;
			}
			if (vo > 2.5 && vc < .5) {
				vo = 0;
				dir = 1;
			}

			// generate output voltage
			sim.updateVoltageSource(0, lead_node[1], pins[1].voltSource, vo);
			// now we set the current through the cap to be equal to the
			// current through R1 and R2, so we can measure the voltage
			// across the cap
			int cur1 = sim.nodeCount + pins[4].voltSource;
			int cur2 = sim.nodeCount + pins[5].voltSource;
			sim.stampMatrix(lead_node[2], cur1, dir);
			sim.stampMatrix(lead_node[2], cur2, dir);
			sim.stampMatrix(lead_node[3], cur1, -dir);
			sim.stampMatrix(lead_node[3], cur2, -dir);
			cDir = dir;
		}
Exemple #2
0
        public override void step(Circuit sim)
        {
            bool v1 = lead_volt[0] > 2.5;
            bool v2 = lead_volt[1] > 2.5;

            if (v1 && !pins[0].value)
            {
                ff1 = true;
            }
            if (v2 && !pins[1].value)
            {
                ff2 = true;
            }
            if (ff1 && ff2)
            {
                ff1 = ff2 = false;
            }
            double @out = (ff1) ? 5 : (ff2) ? 0 : -1;

            // System.out.println(out + " " + v1 + " " + v2);
            if (@out != -1)
            {
                sim.stampVoltageSource(0, lead_node[2], pins[2].voltSource, @out);
            }
            else
            {
                // tie current through output pin to 0
                int vn = sim.nodeCount + pins[2].voltSource;
                sim.stampMatrix(vn, vn, 1);
            }
            pins[0].value = v1;
            pins[1].value = v2;
        }
Exemple #3
0
        /*public override void getInfo(String[] arr) {
         *      arr[0] = "op-amp";
         *      arr[1] = "V+ = " + getVoltageText(lead_volt[1]);
         *      arr[2] = "V- = " + getVoltageText(lead_volt[0]);
         *      // sometimes the voltage goes slightly outside range, to make
         *      // convergence easier. so we hide that here.
         *      double vo = Math.Max(Math.Min(lead_volt[2], maxOut), minOut);
         *      arr[3] = "Vout = " + getVoltageText(vo);
         *      arr[4] = "Iout = " + getCurrentText(current);
         *      arr[5] = "range = " + getVoltageText(minOut) + " to " + getVoltageText(maxOut);
         * }*/

        public override void stamp(Circuit sim)
        {
            int vn = sim.nodeCount + voltSource;

            sim.stampNonLinear(vn);
            sim.stampMatrix(lead_node[2], vn, 1);
        }
Exemple #4
0
        public override void step(Circuit sim)
        {
            double vd = lead_volt[1] - lead_volt[0];

            if (Math.Abs(lastvd - vd) > 0.1)
            {
                sim.converged = false;
            }
            else if (lead_volt[2] > maxOut + 0.1 || lead_volt[2] < minOut - 0.1)
            {
                sim.converged = false;
            }

            double x  = 0;
            int    vn = sim.nodeCount + voltSource;
            double dx = 0;

            if (vd >= maxOut / gain && (lastvd >= 0 || getRand(4) == 1))
            {
                dx = 1E-4;
                x  = maxOut - dx * maxOut / gain;
            }
            else if (vd <= minOut / gain && (lastvd <= 0 || getRand(4) == 1))
            {
                dx = 1E-4;
                x  = minOut - dx * minOut / gain;
            }
            else
            {
                dx = gain;
            }

            // newton-raphson
            sim.stampMatrix(vn, lead_node[0], dx);
            sim.stampMatrix(vn, lead_node[1], -dx);
            sim.stampMatrix(vn, lead_node[2], 1);
            sim.stampRightSide(vn, x);

            lastvd = vd;
        }
Exemple #5
0
        public override void step(Circuit sim)
        {
            double vbc = lead_volt[0] - lead_volt[1];             // typically negative
            double vbe = lead_volt[0] - lead_volt[2];             // typically positive

            if (Math.Abs(vbc - lastvbc) > 0.01 || Math.Abs(vbe - lastvbe) > 0.01)
            {
                sim.converged = false;
            }

            gmin = 0;
            if (sim.subIterations > 100)
            {
                // if we have trouble converging, put a conductance in parallel with
                // all P-N junctions. Gradually increase the conductance value for each iteration.
                gmin = Math.Exp(-9 * Math.Log(10) * (1 - sim.subIterations / 3000.0));
                if (gmin > .1)
                {
                    gmin = .1;
                }
            }

            vbc     = pnp * limitStep(sim, pnp * vbc, pnp * lastvbc);
            vbe     = pnp * limitStep(sim, pnp * vbe, pnp * lastvbe);
            lastvbc = vbc;
            lastvbe = vbe;
            double pcoef = vdcoef * pnp;
            double expbc = Math.Exp(vbc * pcoef);

            double expbe = Math.Exp(vbe * pcoef);

            if (expbe < 1)
            {
                expbe = 1;
            }

            ie = pnp * leakage * (-(expbe - 1) + rgain * (expbc - 1));
            ic = pnp * leakage * (fgain * (expbe - 1) - (expbc - 1));
            ib = -(ie + ic);

            double gee = -leakage * vdcoef * expbe;
            double gec = rgain * leakage * vdcoef * expbc;
            double gce = -gee * fgain;
            double gcc = -gec * (1 / rgain);

            // stamps from page 302 of Pillage. Node 0 is the base,
            // node 1 the collector, node 2 the emitter. Also stamp
            // minimum conductance (gmin) between b,e and b,c
            sim.stampMatrix(lead_node[0], lead_node[0], -gee - gec - gce - gcc + gmin * 2);
            sim.stampMatrix(lead_node[0], lead_node[1], gec + gcc - gmin);
            sim.stampMatrix(lead_node[0], lead_node[2], gee + gce - gmin);
            sim.stampMatrix(lead_node[1], lead_node[0], gce + gcc - gmin);
            sim.stampMatrix(lead_node[1], lead_node[1], -gcc + gmin);
            sim.stampMatrix(lead_node[1], lead_node[2], -gce);
            sim.stampMatrix(lead_node[2], lead_node[0], gee + gec - gmin);
            sim.stampMatrix(lead_node[2], lead_node[1], -gec);
            sim.stampMatrix(lead_node[2], lead_node[2], -gee + gmin);

            // we are solving for v(k+1), not delta v, so we use formula
            // 10.5.13, multiplying J by v(k)
            sim.stampRightSide(lead_node[0], -ib - (gec + gcc) * vbc - (gee + gce) * vbe);
            sim.stampRightSide(lead_node[1], -ic + gce * vbe + gcc * vbc);
            sim.stampRightSide(lead_node[2], -ie + gee * vbe + gec * vbc);
        }
Exemple #6
0
        public override void step(Circuit sim)
        {
            double[] vs = new double[3];
            vs[0] = lead_volt[0];
            vs[1] = lead_volt[1];
            vs[2] = lead_volt[2];
            if (vs[1] > lastv1 + .5)
            {
                vs[1] = lastv1 + .5;
            }
            if (vs[1] < lastv1 - .5)
            {
                vs[1] = lastv1 - .5;
            }
            if (vs[2] > lastv2 + .5)
            {
                vs[2] = lastv2 + .5;
            }
            if (vs[2] < lastv2 - .5)
            {
                vs[2] = lastv2 - .5;
            }
            int source = 1;
            int drain  = 2;

            if ((pnp ? -1 : 1) * vs[1] > (pnp ? -1 : 1) * vs[2])
            {
                source = 2;
                drain  = 1;
            }
            int    gate = 0;
            double vgs  = vs[gate] - vs[source];
            double vds  = vs[drain] - vs[source];

            if (Math.Abs(lastv1 - vs[1]) > .01 || Math.Abs(lastv2 - vs[2]) > .01)
            {
                sim.converged = false;
            }
            lastv1 = vs[1];
            lastv2 = vs[2];
            double realvgs = vgs;
            double realvds = vds;

            vgs *= (pnp ? -1 : 1);
            vds *= (pnp ? -1 : 1);
            ids  = 0;
            gm   = 0;
            double Gds  = 0;
            double beta = getBeta();

            if (vgs > .5 && this is JfetElm)
            {
                sim.panic("JFET is reverse biased!", this);
                return;
            }
            if (vgs < _threshold)
            {
                // should be all zero, but that causes a singular matrix,
                // so instead we treat it as a large resistor
                Gds  = 1e-8;
                ids  = vds * Gds;
                mode = 0;
            }
            else if (vds < vgs - _threshold)
            {
                // linear
                ids  = beta * ((vgs - _threshold) * vds - vds * vds * .5);
                gm   = beta * vds;
                Gds  = beta * (vgs - vds - _threshold);
                mode = 1;
            }
            else
            {
                // saturation; Gds = 0
                gm = beta * (vgs - _threshold);
                // use very small Gds to avoid nonconvergence
                Gds  = 1e-8;
                ids  = 0.5 * beta * (vgs - _threshold) * (vgs - _threshold) + (vds - (vgs - _threshold)) * Gds;
                mode = 2;
            }
            double rs = -(pnp ? -1 : 1) * ids + Gds * realvds + gm * realvgs;

            sim.stampMatrix(lead_node[drain], lead_node[drain], Gds);
            sim.stampMatrix(lead_node[drain], lead_node[source], -Gds - gm);
            sim.stampMatrix(lead_node[drain], lead_node[gate], gm);
            sim.stampMatrix(lead_node[source], lead_node[drain], -Gds);
            sim.stampMatrix(lead_node[source], lead_node[source], Gds + gm);
            sim.stampMatrix(lead_node[source], lead_node[gate], -gm);
            sim.stampRightSide(lead_node[drain], rs);
            sim.stampRightSide(lead_node[source], -rs);
            if (source == 2 && (pnp ? -1 : 1) == 1 || source == 1 && (pnp ? -1 : 1) == -1)
            {
                ids = -ids;
            }
        }
Exemple #7
0
        /*public override double getPower() {
         *      return (lead_volt[0] - lead_volt[2]) * current;
         * }*/

        public override void step(Circuit sim)
        {
            double[] vs = new double[3];
            vs[0] = lead_volt[0];
            vs[1] = lead_volt[1];
            vs[2] = lead_volt[2];
            if (vs[1] > lastv1 + 0.5)
            {
                vs[1] = lastv1 + 0.5;
            }
            if (vs[1] < lastv1 - 0.5)
            {
                vs[1] = lastv1 - 0.5;
            }
            if (vs[2] > lastv2 + 0.5)
            {
                vs[2] = lastv2 + 0.5;
            }
            if (vs[2] < lastv2 - 0.5)
            {
                vs[2] = lastv2 - 0.5;
            }
            int    grid  = 1;
            int    cath  = 2;
            int    plate = 0;
            double vgk   = vs[grid] - vs[cath];
            double vpk   = vs[plate] - vs[cath];

            if (Math.Abs(lastv0 - vs[0]) > 0.01 || Math.Abs(lastv1 - vs[1]) > 0.01 || Math.Abs(lastv2 - vs[2]) > 0.01)
            {
                sim.converged = false;
            }
            lastv0 = vs[0];
            lastv1 = vs[1];
            lastv2 = vs[2];
            double ids  = 0;
            double gm   = 0;
            double Gds  = 0;
            double ival = vgk + vpk / mu;

            currentg = 0;
            if (vgk > .01)
            {
                sim.stampResistor(lead_node[grid], lead_node[cath], gridCurrentR);
                currentg = vgk / gridCurrentR;
            }
            if (ival < 0)
            {
                // should be all zero, but that causes a singular matrix,
                // so instead we treat it as a large resistor
                Gds = 1E-8;
                ids = vpk * Gds;
            }
            else
            {
                ids = Math.Pow(ival, 1.5) / kg1;
                double q = 1.5 * Math.Sqrt(ival) / kg1;
                // gm = dids/dgk;
                // Gds = dids/dpk;
                Gds = q;
                gm  = q / mu;
            }
            currentp = ids;
            currentc = ids + currentg;
            double rs = -ids + Gds * vpk + gm * vgk;

            sim.stampMatrix(lead_node[plate], lead_node[plate], Gds);
            sim.stampMatrix(lead_node[plate], lead_node[cath], -Gds - gm);
            sim.stampMatrix(lead_node[plate], lead_node[grid], gm);

            sim.stampMatrix(lead_node[cath], lead_node[plate], -Gds);
            sim.stampMatrix(lead_node[cath], lead_node[cath], Gds + gm);
            sim.stampMatrix(lead_node[cath], lead_node[grid], -gm);

            sim.stampRightSide(lead_node[plate], rs);
            sim.stampRightSide(lead_node[cath], -rs);
        }