public bool TestIntersection(GeoAABB2 aabb) { if (mFlatTreeList == null || mFlatTreeList.Count == 0) { return(false); } int closer, other; BVHTraversal[] todo = new BVHTraversal[64]; todo[0] = new BVHTraversal(); int stackptr = 0; todo[stackptr].mIndex = 0; todo[stackptr].mLength = -9999999.0f; while (stackptr >= 0) { int ni = todo[stackptr].mIndex; stackptr--; BVHFlatNode2 node = mFlatTreeList[ni]; // 对叶节点做相交测试 if (node.mRightOffset == 0) { bool hit = false; for (int o = 0; o < node.mLeafCount; ++o) { BVHObject2 obj = mBuildPrims[(int)node.mStartIndex + o]; hit = obj.TestAABBIntersect(aabb); if (hit) { return(true); } } } else { closer = ni + 1; other = ni + (int)node.mRightOffset; // 对父结点做测试 bool hitc0 = GeoAABBUtils.IsAABBInsectAABB2(aabb.mMin, aabb.mMax, mFlatTreeList[closer].mBox.mMin, mFlatTreeList[closer].mBox.mMax); bool hitc1 = GeoAABBUtils.IsAABBInsectAABB2(aabb.mMin, aabb.mMax, mFlatTreeList[other].mBox.mMin, mFlatTreeList[other].mBox.mMax); if (hitc0 && hitc1) { todo[++stackptr] = new BVHTraversal(other, -9999); todo[++stackptr] = new BVHTraversal(closer, -9999); } else if (hitc0) { todo[++stackptr] = new BVHTraversal(closer, -9999); } else if (hitc1) { todo[++stackptr] = new BVHTraversal(other, -9999); } } } return(false); }
public bool GetIntersection(GeoRay2 ray, ref GeoInsectPointArrayInfo intersection, bool occlusion) { if (mFlatTreeList.Count == 0) { return(false); } intersection.mIsIntersect = false; intersection.mLength = 999999999.0f; intersection.mHitObject2 = null; int closer, other; BVHTraversal[] todo = new BVHTraversal[64]; todo[0] = new BVHTraversal(); int stackptr = 0; todo[stackptr].mIndex = 0; todo[stackptr].mLength = -9999999.0f; while (stackptr >= 0) { int ni = todo[stackptr].mIndex; float near = todo[stackptr].mLength; stackptr--; BVHFlatNode2 node = mFlatTreeList[ni]; // 对叶节点做相交测试 if (node.mRightOffset == 0) { bool hit = false; for (int o = 0; o < node.mLeafCount; ++o) { GeoInsectPointArrayInfo current = new GeoInsectPointArrayInfo(); BVHObject2 obj = mBuildPrims[(int)node.mStartIndex + o]; hit = obj.IsIntersect(ref ray, ref current); if (hit) { if (occlusion) { intersection = current; return(true); } if (current.mLength < intersection.mLength) { intersection = current; } } } } else { closer = ni + 1; other = ni + (int)node.mRightOffset; // 对父结点做测试 GeoInsectPointArrayInfo in1 = new GeoInsectPointArrayInfo(); GeoInsectPointArrayInfo in2 = new GeoInsectPointArrayInfo(); bool hitc0 = GeoRayUtils.IsRayInsectAABB2(ray.mOrigin, ray.mDirection, mFlatTreeList[closer].mBox.mMin, mFlatTreeList[closer].mBox.mMax, ref in1); bool hitc1 = GeoRayUtils.IsRayInsectAABB2(ray.mOrigin, ray.mDirection, mFlatTreeList[other].mBox.mMin, mFlatTreeList[other].mBox.mMax, ref in2); if (hitc0 && hitc1) { float l0 = (GeoUtils.ToVector2(in1.mHitGlobalPoint[0]) - ray.mOrigin).magnitude; float l2 = (GeoUtils.ToVector2(in2.mHitGlobalPoint[0]) - ray.mOrigin).magnitude; if (l2 < l0) { float temp = l0; l0 = l2; l2 = temp; int itemp = closer; closer = other; other = itemp; } todo[++stackptr] = new BVHTraversal(other, l2); todo[++stackptr] = new BVHTraversal(closer, l0); } else if (hitc0) { float l0 = (GeoUtils.ToVector2(in1.mHitGlobalPoint[0]) - ray.mOrigin).magnitude; todo[++stackptr] = new BVHTraversal(closer, l0); } else if (hitc1) { float l2 = (GeoUtils.ToVector2(in2.mHitGlobalPoint[0]) - ray.mOrigin).magnitude; todo[++stackptr] = new BVHTraversal(other, l2); } } } if (intersection.mHitObject2 != null) { intersection.mHitGlobalPoint.Clear(); intersection.mHitGlobalPoint.Add(ray.mOrigin + ray.mDirection * intersection.mLength); } return(intersection.mHitObject2 != null); }
/// <summary> /// /// </summary> /// <param name="ray">射线</param> /// <param name="intersection">交点信息</param> /// <param name="occlusion">是否找到最短的。 true if 找到交叉就行; false if 找到最短的 </param> /// <returns></returns> public bool GetIntersection(BVHRay ray, ref BVHIntersectionInfo intersection, bool occlusion) { intersection.mLength = 999999999.0f; intersection.mObject = null; float[] bbhits = new float[4]; int closer, other; BVHTraversal[] todo = new BVHTraversal[64]; todo[0] = new BVHTraversal(); int stackptr = 0; todo[stackptr].mIndex = 0; todo[stackptr].mLength = -9999999.0f; while (stackptr >= 0) { int ni = todo[stackptr].mIndex; float near = todo[stackptr].mLength; stackptr--; BVHFlatNode node = mFlatTreeList[ni]; // 对叶节点做相交测试 if (node.mRightOffset == 0) { bool hit = false; for (int o = 0; o < node.mLeafCount; ++o) { BVHIntersectionInfo current = new BVHIntersectionInfo(); BVHObject obj = mBuildPrims[(int)node.mStartIndex + o]; hit = obj.GetIntersection(ref ray, ref current); if (hit) { if (occlusion) { return(true); } if (current.mLength < intersection.mLength) { intersection = current; } } } } else { // 对父结点做测试 bool hitc0 = mFlatTreeList[ni + 1].mBox.Intersect(ray, ref bbhits[0], ref bbhits[1]); bool hitc1 = mFlatTreeList[ni + (int)node.mRightOffset].mBox.Intersect(ray, ref bbhits[2], ref bbhits[3]); if (hitc0 && hitc1) { closer = ni + 1; other = ni + (int)node.mRightOffset; if (bbhits[2] < bbhits[0]) { float temp = bbhits[0]; bbhits[0] = bbhits[2]; bbhits[2] = temp; temp = bbhits[1]; bbhits[1] = bbhits[3]; bbhits[3] = temp; int itemp = closer; closer = other; other = itemp; } todo[++stackptr] = new BVHTraversal(other, bbhits[2]); todo[++stackptr] = new BVHTraversal(closer, bbhits[0]); } else if (hitc0) { todo[++stackptr] = new BVHTraversal(ni + 1, bbhits[0]); } else if (hitc1) { todo[++stackptr] = new BVHTraversal(ni + (int)node.mRightOffset, bbhits[2]); } } } if (intersection.mObject != null) { intersection.mHitPoint = ray.mOrigin + ray.mDirection * intersection.mLength; } return(intersection.mObject != null); }