Exemple #1
0
        public BigInteger[] divideAndRemainder(BigInteger divisor)
        {
            int divisorSign = divisor.sign;

            if (divisorSign == 0)
            {
                throw new ArithmeticException("BigInteger divide by zero");
            }
            int divisorLen = divisor.numberLength;

            int[] divisorDigits = divisor.digits;
            if (divisorLen == 1)
            {
                return(Division.divideAndRemainderByInteger(this, divisorDigits[0],
                                                            divisorSign));
            }


            // res[0] is a quotient and res[1] is a remainder:
            int[] thisDigits = digits;
            int   thisLen    = numberLength;
            int   cmp        = (thisLen != divisorLen) ? ((thisLen > divisorLen) ? 1 : -1)
                : Elementary.compareArrays(thisDigits, divisorDigits, thisLen);

            if (cmp < 0)
            {
                return(new BigInteger[] { ZERO, this });
            }
            int thisSign        = sign;
            int quotientLength  = thisLen - divisorLen + 1;
            int remainderLength = divisorLen;
            int quotientSign    = ((thisSign == divisorSign) ? 1 : -1);

            int[] quotientDigits  = new int[quotientLength];
            int[] remainderDigits = Division.divide(quotientDigits, quotientLength,
                                                    thisDigits, thisLen, divisorDigits, divisorLen);
            BigInteger result0 = new BigInteger(quotientSign, quotientLength,
                                                quotientDigits);
            BigInteger result1 = new BigInteger(thisSign, remainderLength,
                                                remainderDigits);

            result0.cutOffLeadingZeroes();
            result1.cutOffLeadingZeroes();
            return(new BigInteger[] { result0, result1 });
        }
Exemple #2
0
 public int compareTo(BigInteger val)
 {
     if (sign > val.sign)
     {
         return(GREATER);
     }
     if (sign < val.sign)
     {
         return(LESS);
     }
     if (numberLength > val.numberLength)
     {
         return(sign);
     }
     if (numberLength < val.numberLength)
     {
         return(-val.sign);
     }
     // Equal sign and equal numberLength
     return(sign * Elementary.compareArrays(digits, val.digits,
                                            numberLength));
 }
Exemple #3
0
        internal static BigInteger subtract(BigInteger op1, BigInteger op2)
        {
            int resSign;

            int[] resDigits;
            int   op1Sign = op1.sign;
            int   op2Sign = op2.sign;

            if (op2Sign == 0)
            {
                return(op1);
            }
            if (op1Sign == 0)
            {
                return(op2.negate());
            }
            int op1Len = op1.numberLength;
            int op2Len = op2.numberLength;

            if (op1Len + op2Len == 2)
            {
                long a = (op1.digits[0] & 0xFFFFFFFFL);
                long b = (op2.digits[0] & 0xFFFFFFFFL);
                if (op1Sign < 0)
                {
                    a = -a;
                }
                if (op2Sign < 0)
                {
                    b = -b;
                }
                return(BigInteger.valueOf(a - b));
            }
            int cmp = ((op1Len != op2Len) ? ((op1Len > op2Len) ? 1 : -1)
                        : Elementary.compareArrays(op1.digits, op2.digits, op1Len));

            if (cmp == BigInteger.LESS)
            {
                resSign   = -op2Sign;
                resDigits = (op1Sign == op2Sign) ? subtract(op2.digits, op2Len,
                                                            op1.digits, op1Len) : add(op2.digits, op2Len, op1.digits,
                                                                                      op1Len);
            }
            else
            {
                resSign = op1Sign;
                if (op1Sign == op2Sign)
                {
                    if (cmp == BigInteger.EQUALS)
                    {
                        return(BigInteger.ZERO);
                    }
                    resDigits = subtract(op1.digits, op1Len, op2.digits, op2Len);
                }
                else
                {
                    resDigits = add(op1.digits, op1Len, op2.digits, op2Len);
                }
            }
            BigInteger res = new BigInteger(resSign, resDigits.Length, resDigits);

            res.cutOffLeadingZeroes();
            return(res);
        }
Exemple #4
0
        internal static BigInteger nextProbablePrime(BigInteger n)
        {
            // PRE: n >= 0
            int i, j;
            int certainty;
            int gapSize = 1024; // for searching of the next probable prime number

            int[]      modules     = new int[primes.Length];
            bool[]     isDivisible = new bool[gapSize];
            BigInteger startPoint;
            BigInteger probPrime;

            // If n < "last prime of table" searches next prime in the table
            if ((n.numberLength == 1) && (n.digits[0] >= 0) &&
                (n.digits[0] < primes[primes.Length - 1]))
            {
                for (i = 0; n.digits[0] >= primes[i]; i++)
                {
                    ;
                }
                return(BIprimes[i]);
            }

            /*
             * Creates a "N" enough big to hold the next probable prime Note that: N <
             * "next prime" < 2*N
             */
            startPoint = new BigInteger(1, n.numberLength,
                                        new int[n.numberLength + 1]);
            Array.Copy(n.digits, startPoint.digits, n.numberLength);
            // To fix N to the "next odd number"
            if (n.testBit(0))
            {
                Elementary.inplaceAdd(startPoint, 2);
            }
            else
            {
                startPoint.digits[0] |= 1;
            }
            // To set the improved certainly of Miller-Rabin
            j = startPoint.bitLength();
            for (certainty = 2; j < BITS[certainty]; certainty++)
            {
                ;
            }
            // To calculate modules: N mod p1, N mod p2, ... for first primes.
            for (i = 0; i < primes.Length; i++)
            {
                modules[i] = Division.remainder(startPoint, primes[i]) - gapSize;
            }
            while (true)
            {
                // At this point, all numbers in the gap are initialized as
                // probably primes
                Array.Clear(isDivisible, 0, isDivisible.Length);
                // To discard multiples of first primes
                for (i = 0; i < primes.Length; i++)
                {
                    modules[i] = (modules[i] + gapSize) % primes[i];
                    j          = (modules[i] == 0) ? 0 : (primes[i] - modules[i]);
                    for (; j < gapSize; j += primes[i])
                    {
                        isDivisible[j] = true;
                    }
                }
                // To execute Miller-Rabin for non-divisible numbers by all first
                // primes
                for (j = 0; j < gapSize; j++)
                {
                    if (!isDivisible[j])
                    {
                        probPrime = startPoint.copy();
                        Elementary.inplaceAdd(probPrime, j);

                        if (millerRabin(probPrime, certainty))
                        {
                            return(probPrime);
                        }
                    }
                }
                Elementary.inplaceAdd(startPoint, gapSize);
            }
        }
Exemple #5
0
 public BigInteger subtract(BigInteger val)
 {
     return(Elementary.subtract(this, val));
 }
Exemple #6
0
 public BigInteger add(BigInteger val)
 {
     return(Elementary.add(this, val));
 }
Exemple #7
0
        private static void setFromString(BigInteger bi, String val, int radix)
        {
            int sign;

            int[] digits;
            int   numberLength;
            int   stringLength = val.Length;
            int   startChar;
            int   endChar = stringLength;

            if (val[0] == '-')
            {
                sign      = -1;
                startChar = 1;
                stringLength--;
            }
            else
            {
                sign      = 1;
                startChar = 0;
            }

            /*
             * We use the following algorithm: split a string into portions of n
             * characters and convert each portion to an integer according to the
             * radix. Then convert an exp(radix, n) based number to binary using the
             * multiplication method. See D. Knuth, The Art of Computer Programming,
             * vol. 2.
             */

            int charsPerInt          = Conversion.digitFitInInt[radix];
            int bigRadixDigitsLength = stringLength / charsPerInt;
            int topChars             = stringLength % charsPerInt;

            if (topChars != 0)
            {
                bigRadixDigitsLength++;
            }
            digits = new int[bigRadixDigitsLength];
            // Get the maximal power of radix that fits in int
            int bigRadix = Conversion.bigRadices[radix - 2];
            // Parse an input string and accumulate the BigInteger's magnitude
            int digitIndex = 0; // index of digits array
            int substrEnd  = startChar + ((topChars == 0) ? charsPerInt : topChars);
            int newDigit;

            for (int substrStart = startChar; substrStart < endChar; substrStart = substrEnd, substrEnd = substrStart
                                                                                                          + charsPerInt)
            {
                int bigRadixDigit = Convert.ToInt32(val.Substring(substrStart,
                                                                  substrEnd - substrStart), radix);
                newDigit = Multiplication.multiplyByInt(digits, digitIndex,
                                                        bigRadix);
                newDigit += Elementary
                            .inplaceAdd(digits, digitIndex, bigRadixDigit);
                digits[digitIndex++] = newDigit;
            }
            numberLength    = digitIndex;
            bi.sign         = sign;
            bi.numberLength = numberLength;
            bi.digits       = digits;
            bi.cutOffLeadingZeroes();
        }
Exemple #8
0
        internal static BigInteger modInverseLorencz(BigInteger a, BigInteger modulo)
        {
            int max = Math.Max(a.numberLength, modulo.numberLength);

            int[] uDigits = new int[max + 1]; // enough place to make all the inplace operation
            int[] vDigits = new int[max + 1];
            Array.Copy(modulo.digits, uDigits, modulo.numberLength);
            Array.Copy(a.digits, vDigits, a.numberLength);
            BigInteger u = new BigInteger(modulo.sign, modulo.numberLength,
                                          uDigits);
            BigInteger v = new BigInteger(a.sign, a.numberLength, vDigits);

            BigInteger r = new BigInteger(0, 1, new int[max + 1]); // BigInteger.ZERO;
            BigInteger s = new BigInteger(1, 1, new int[max + 1]);

            s.digits[0] = 1;
            // r == 0 && s == 1, but with enough place

            int coefU = 0, coefV = 0;
            int n = modulo.bitLength();
            int k;

            while (!isPowerOfTwo(u, coefU) && !isPowerOfTwo(v, coefV))
            {
                // modification of original algorithm: I calculate how many times the algorithm will enter in the same branch of if
                k = howManyIterations(u, n);

                if (k != 0)
                {
                    BitLevel.inplaceShiftLeft(u, k);
                    if (coefU >= coefV)
                    {
                        BitLevel.inplaceShiftLeft(r, k);
                    }
                    else
                    {
                        BitLevel.inplaceShiftRight(s, Math.Min(coefV - coefU, k));
                        if (k - (coefV - coefU) > 0)
                        {
                            BitLevel.inplaceShiftLeft(r, k - coefV + coefU);
                        }
                    }
                    coefU += k;
                }

                k = howManyIterations(v, n);
                if (k != 0)
                {
                    BitLevel.inplaceShiftLeft(v, k);
                    if (coefV >= coefU)
                    {
                        BitLevel.inplaceShiftLeft(s, k);
                    }
                    else
                    {
                        BitLevel.inplaceShiftRight(r, Math.Min(coefU - coefV, k));
                        if (k - (coefU - coefV) > 0)
                        {
                            BitLevel.inplaceShiftLeft(s, k - coefU + coefV);
                        }
                    }
                    coefV += k;
                }

                if (u.signum() == v.signum())
                {
                    if (coefU <= coefV)
                    {
                        Elementary.completeInPlaceSubtract(u, v);
                        Elementary.completeInPlaceSubtract(r, s);
                    }
                    else
                    {
                        Elementary.completeInPlaceSubtract(v, u);
                        Elementary.completeInPlaceSubtract(s, r);
                    }
                }
                else
                {
                    if (coefU <= coefV)
                    {
                        Elementary.completeInPlaceAdd(u, v);
                        Elementary.completeInPlaceAdd(r, s);
                    }
                    else
                    {
                        Elementary.completeInPlaceAdd(v, u);
                        Elementary.completeInPlaceAdd(s, r);
                    }
                }
                if (v.signum() == 0 || u.signum() == 0)
                {
                    throw new ArithmeticException("BigInteger not invertible");
                }
            }

            if (isPowerOfTwo(v, coefV))
            {
                r = s;
                if (v.signum() != u.signum())
                {
                    u = u.negate();
                }
            }
            if (u.testBit(n))
            {
                if (r.signum() < 0)
                {
                    r = r.negate();
                }
                else
                {
                    r = modulo.subtract(r);
                }
            }
            if (r.signum() < 0)
            {
                r = r.add(modulo);
            }

            return(r);
        }
Exemple #9
0
        internal static BigInteger modInverseMontgomery(BigInteger a, BigInteger p)
        {
            if (a.sign == 0)
            {
                // ZERO hasn't inverse
                throw new ArithmeticException("BigInteger not invertible");
            }


            if (!p.testBit(0))
            {
                // montgomery inverse require even modulo
                return(modInverseLorencz(a, p));
            }

            int m = p.numberLength * 32;
            // PRE: a \in [1, p - 1]
            BigInteger u, v, r, s;

            u = p.copy();  // make copy to use inplace method
            v = a.copy();
            int max = Math.Max(v.numberLength, u.numberLength);

            r           = new BigInteger(1, 1, new int[max + 1]);
            s           = new BigInteger(1, 1, new int[max + 1]);
            s.digits[0] = 1;
            // s == 1 && v == 0

            int k = 0;

            int lsbu = u.getLowestSetBit();
            int lsbv = v.getLowestSetBit();
            int toShift;

            if (lsbu > lsbv)
            {
                BitLevel.inplaceShiftRight(u, lsbu);
                BitLevel.inplaceShiftRight(v, lsbv);
                BitLevel.inplaceShiftLeft(r, lsbv);
                k += lsbu - lsbv;
            }
            else
            {
                BitLevel.inplaceShiftRight(u, lsbu);
                BitLevel.inplaceShiftRight(v, lsbv);
                BitLevel.inplaceShiftLeft(s, lsbu);
                k += lsbv - lsbu;
            }

            r.sign = 1;
            while (v.signum() > 0)
            {
                // INV v >= 0, u >= 0, v odd, u odd (except last iteration when v is even (0))

                while (u.compareTo(v) > BigInteger.EQUALS)
                {
                    Elementary.inplaceSubtract(u, v);
                    toShift = u.getLowestSetBit();
                    BitLevel.inplaceShiftRight(u, toShift);
                    Elementary.inplaceAdd(r, s);
                    BitLevel.inplaceShiftLeft(s, toShift);
                    k += toShift;
                }

                while (u.compareTo(v) <= BigInteger.EQUALS)
                {
                    Elementary.inplaceSubtract(v, u);
                    if (v.signum() == 0)
                    {
                        break;
                    }
                    toShift = v.getLowestSetBit();
                    BitLevel.inplaceShiftRight(v, toShift);
                    Elementary.inplaceAdd(s, r);
                    BitLevel.inplaceShiftLeft(r, toShift);
                    k += toShift;
                }
            }
            if (!u.isOne())
            {
                // in u is stored the gcd
                throw new ArithmeticException("BigInteger not invertible.");
            }
            if (r.compareTo(p) >= BigInteger.EQUALS)
            {
                Elementary.inplaceSubtract(r, p);
            }

            r = p.subtract(r);

            // Have pair: ((BigInteger)r, (Integer)k) where r == a^(-1) * 2^k mod (module)
            int n1 = calcN(p);

            if (k > m)
            {
                r = monPro(r, BigInteger.ONE, p, n1);
                k = k - m;
            }

            r = monPro(r, BigInteger.getPowerOfTwo(m - k), p, n1);
            return(r);
        }
Exemple #10
0
        internal static BigInteger gcdBinary(BigInteger op1, BigInteger op2)
        {
            // PRE: (op1 > 0) and (op2 > 0)

            /*
             * Divide both number the maximal possible times by 2 without rounding
             * gcd(2*a, 2*b) = 2 * gcd(a,b)
             */
            int lsb1      = op1.getLowestSetBit();
            int lsb2      = op2.getLowestSetBit();
            int pow2Count = Math.Min(lsb1, lsb2);

            BitLevel.inplaceShiftRight(op1, lsb1);
            BitLevel.inplaceShiftRight(op2, lsb2);

            BigInteger swap;

            // I want op2 > op1
            if (op1.compareTo(op2) == BigInteger.GREATER)
            {
                swap = op1;
                op1  = op2;
                op2  = swap;
            }

            do   // INV: op2 >= op1 && both are odd unless op1 = 0

            // Optimization for small operands
            // (op2.bitLength() < 64) implies by INV (op1.bitLength() < 64)
            {
                if ((op2.numberLength == 1) ||
                    ((op2.numberLength == 2) && (op2.digits[1] > 0)))
                {
                    op2 = BigInteger.valueOf(Division.gcdBinary(op1.longValue(),
                                                                op2.longValue()));
                    break;
                }

                // Implements one step of the Euclidean algorithm
                // To reduce one operand if it's much smaller than the other one
                if (op2.numberLength > op1.numberLength * 1.2)
                {
                    op2 = op2.remainder(op1);
                    if (op2.signum() != 0)
                    {
                        BitLevel.inplaceShiftRight(op2, op2.getLowestSetBit());
                    }
                }
                else
                {
                    // Use Knuth's algorithm of successive subtract and shifting
                    do
                    {
                        Elementary.inplaceSubtract(op2, op1);                   // both are odd
                        BitLevel.inplaceShiftRight(op2, op2.getLowestSetBit()); // op2 is even
                    } while (op2.compareTo(op1) >= BigInteger.EQUALS);
                }
                // now op1 >= op2
                swap = op2;
                op2  = op1;
                op1  = swap;
            } while (op1.sign != 0);
            return(op2.shiftLeft(pow2Count));
        }