public BigInteger[] divideAndRemainder(BigInteger divisor) { int divisorSign = divisor.sign; if (divisorSign == 0) { throw new ArithmeticException("BigInteger divide by zero"); } int divisorLen = divisor.numberLength; int[] divisorDigits = divisor.digits; if (divisorLen == 1) { return(Division.divideAndRemainderByInteger(this, divisorDigits[0], divisorSign)); } // res[0] is a quotient and res[1] is a remainder: int[] thisDigits = digits; int thisLen = numberLength; int cmp = (thisLen != divisorLen) ? ((thisLen > divisorLen) ? 1 : -1) : Elementary.compareArrays(thisDigits, divisorDigits, thisLen); if (cmp < 0) { return(new BigInteger[] { ZERO, this }); } int thisSign = sign; int quotientLength = thisLen - divisorLen + 1; int remainderLength = divisorLen; int quotientSign = ((thisSign == divisorSign) ? 1 : -1); int[] quotientDigits = new int[quotientLength]; int[] remainderDigits = Division.divide(quotientDigits, quotientLength, thisDigits, thisLen, divisorDigits, divisorLen); BigInteger result0 = new BigInteger(quotientSign, quotientLength, quotientDigits); BigInteger result1 = new BigInteger(thisSign, remainderLength, remainderDigits); result0.cutOffLeadingZeroes(); result1.cutOffLeadingZeroes(); return(new BigInteger[] { result0, result1 }); }
public int compareTo(BigInteger val) { if (sign > val.sign) { return(GREATER); } if (sign < val.sign) { return(LESS); } if (numberLength > val.numberLength) { return(sign); } if (numberLength < val.numberLength) { return(-val.sign); } // Equal sign and equal numberLength return(sign * Elementary.compareArrays(digits, val.digits, numberLength)); }
internal static BigInteger subtract(BigInteger op1, BigInteger op2) { int resSign; int[] resDigits; int op1Sign = op1.sign; int op2Sign = op2.sign; if (op2Sign == 0) { return(op1); } if (op1Sign == 0) { return(op2.negate()); } int op1Len = op1.numberLength; int op2Len = op2.numberLength; if (op1Len + op2Len == 2) { long a = (op1.digits[0] & 0xFFFFFFFFL); long b = (op2.digits[0] & 0xFFFFFFFFL); if (op1Sign < 0) { a = -a; } if (op2Sign < 0) { b = -b; } return(BigInteger.valueOf(a - b)); } int cmp = ((op1Len != op2Len) ? ((op1Len > op2Len) ? 1 : -1) : Elementary.compareArrays(op1.digits, op2.digits, op1Len)); if (cmp == BigInteger.LESS) { resSign = -op2Sign; resDigits = (op1Sign == op2Sign) ? subtract(op2.digits, op2Len, op1.digits, op1Len) : add(op2.digits, op2Len, op1.digits, op1Len); } else { resSign = op1Sign; if (op1Sign == op2Sign) { if (cmp == BigInteger.EQUALS) { return(BigInteger.ZERO); } resDigits = subtract(op1.digits, op1Len, op2.digits, op2Len); } else { resDigits = add(op1.digits, op1Len, op2.digits, op2Len); } } BigInteger res = new BigInteger(resSign, resDigits.Length, resDigits); res.cutOffLeadingZeroes(); return(res); }
internal static BigInteger nextProbablePrime(BigInteger n) { // PRE: n >= 0 int i, j; int certainty; int gapSize = 1024; // for searching of the next probable prime number int[] modules = new int[primes.Length]; bool[] isDivisible = new bool[gapSize]; BigInteger startPoint; BigInteger probPrime; // If n < "last prime of table" searches next prime in the table if ((n.numberLength == 1) && (n.digits[0] >= 0) && (n.digits[0] < primes[primes.Length - 1])) { for (i = 0; n.digits[0] >= primes[i]; i++) { ; } return(BIprimes[i]); } /* * Creates a "N" enough big to hold the next probable prime Note that: N < * "next prime" < 2*N */ startPoint = new BigInteger(1, n.numberLength, new int[n.numberLength + 1]); Array.Copy(n.digits, startPoint.digits, n.numberLength); // To fix N to the "next odd number" if (n.testBit(0)) { Elementary.inplaceAdd(startPoint, 2); } else { startPoint.digits[0] |= 1; } // To set the improved certainly of Miller-Rabin j = startPoint.bitLength(); for (certainty = 2; j < BITS[certainty]; certainty++) { ; } // To calculate modules: N mod p1, N mod p2, ... for first primes. for (i = 0; i < primes.Length; i++) { modules[i] = Division.remainder(startPoint, primes[i]) - gapSize; } while (true) { // At this point, all numbers in the gap are initialized as // probably primes Array.Clear(isDivisible, 0, isDivisible.Length); // To discard multiples of first primes for (i = 0; i < primes.Length; i++) { modules[i] = (modules[i] + gapSize) % primes[i]; j = (modules[i] == 0) ? 0 : (primes[i] - modules[i]); for (; j < gapSize; j += primes[i]) { isDivisible[j] = true; } } // To execute Miller-Rabin for non-divisible numbers by all first // primes for (j = 0; j < gapSize; j++) { if (!isDivisible[j]) { probPrime = startPoint.copy(); Elementary.inplaceAdd(probPrime, j); if (millerRabin(probPrime, certainty)) { return(probPrime); } } } Elementary.inplaceAdd(startPoint, gapSize); } }
public BigInteger subtract(BigInteger val) { return(Elementary.subtract(this, val)); }
public BigInteger add(BigInteger val) { return(Elementary.add(this, val)); }
private static void setFromString(BigInteger bi, String val, int radix) { int sign; int[] digits; int numberLength; int stringLength = val.Length; int startChar; int endChar = stringLength; if (val[0] == '-') { sign = -1; startChar = 1; stringLength--; } else { sign = 1; startChar = 0; } /* * We use the following algorithm: split a string into portions of n * characters and convert each portion to an integer according to the * radix. Then convert an exp(radix, n) based number to binary using the * multiplication method. See D. Knuth, The Art of Computer Programming, * vol. 2. */ int charsPerInt = Conversion.digitFitInInt[radix]; int bigRadixDigitsLength = stringLength / charsPerInt; int topChars = stringLength % charsPerInt; if (topChars != 0) { bigRadixDigitsLength++; } digits = new int[bigRadixDigitsLength]; // Get the maximal power of radix that fits in int int bigRadix = Conversion.bigRadices[radix - 2]; // Parse an input string and accumulate the BigInteger's magnitude int digitIndex = 0; // index of digits array int substrEnd = startChar + ((topChars == 0) ? charsPerInt : topChars); int newDigit; for (int substrStart = startChar; substrStart < endChar; substrStart = substrEnd, substrEnd = substrStart + charsPerInt) { int bigRadixDigit = Convert.ToInt32(val.Substring(substrStart, substrEnd - substrStart), radix); newDigit = Multiplication.multiplyByInt(digits, digitIndex, bigRadix); newDigit += Elementary .inplaceAdd(digits, digitIndex, bigRadixDigit); digits[digitIndex++] = newDigit; } numberLength = digitIndex; bi.sign = sign; bi.numberLength = numberLength; bi.digits = digits; bi.cutOffLeadingZeroes(); }
internal static BigInteger modInverseLorencz(BigInteger a, BigInteger modulo) { int max = Math.Max(a.numberLength, modulo.numberLength); int[] uDigits = new int[max + 1]; // enough place to make all the inplace operation int[] vDigits = new int[max + 1]; Array.Copy(modulo.digits, uDigits, modulo.numberLength); Array.Copy(a.digits, vDigits, a.numberLength); BigInteger u = new BigInteger(modulo.sign, modulo.numberLength, uDigits); BigInteger v = new BigInteger(a.sign, a.numberLength, vDigits); BigInteger r = new BigInteger(0, 1, new int[max + 1]); // BigInteger.ZERO; BigInteger s = new BigInteger(1, 1, new int[max + 1]); s.digits[0] = 1; // r == 0 && s == 1, but with enough place int coefU = 0, coefV = 0; int n = modulo.bitLength(); int k; while (!isPowerOfTwo(u, coefU) && !isPowerOfTwo(v, coefV)) { // modification of original algorithm: I calculate how many times the algorithm will enter in the same branch of if k = howManyIterations(u, n); if (k != 0) { BitLevel.inplaceShiftLeft(u, k); if (coefU >= coefV) { BitLevel.inplaceShiftLeft(r, k); } else { BitLevel.inplaceShiftRight(s, Math.Min(coefV - coefU, k)); if (k - (coefV - coefU) > 0) { BitLevel.inplaceShiftLeft(r, k - coefV + coefU); } } coefU += k; } k = howManyIterations(v, n); if (k != 0) { BitLevel.inplaceShiftLeft(v, k); if (coefV >= coefU) { BitLevel.inplaceShiftLeft(s, k); } else { BitLevel.inplaceShiftRight(r, Math.Min(coefU - coefV, k)); if (k - (coefU - coefV) > 0) { BitLevel.inplaceShiftLeft(s, k - coefU + coefV); } } coefV += k; } if (u.signum() == v.signum()) { if (coefU <= coefV) { Elementary.completeInPlaceSubtract(u, v); Elementary.completeInPlaceSubtract(r, s); } else { Elementary.completeInPlaceSubtract(v, u); Elementary.completeInPlaceSubtract(s, r); } } else { if (coefU <= coefV) { Elementary.completeInPlaceAdd(u, v); Elementary.completeInPlaceAdd(r, s); } else { Elementary.completeInPlaceAdd(v, u); Elementary.completeInPlaceAdd(s, r); } } if (v.signum() == 0 || u.signum() == 0) { throw new ArithmeticException("BigInteger not invertible"); } } if (isPowerOfTwo(v, coefV)) { r = s; if (v.signum() != u.signum()) { u = u.negate(); } } if (u.testBit(n)) { if (r.signum() < 0) { r = r.negate(); } else { r = modulo.subtract(r); } } if (r.signum() < 0) { r = r.add(modulo); } return(r); }
internal static BigInteger modInverseMontgomery(BigInteger a, BigInteger p) { if (a.sign == 0) { // ZERO hasn't inverse throw new ArithmeticException("BigInteger not invertible"); } if (!p.testBit(0)) { // montgomery inverse require even modulo return(modInverseLorencz(a, p)); } int m = p.numberLength * 32; // PRE: a \in [1, p - 1] BigInteger u, v, r, s; u = p.copy(); // make copy to use inplace method v = a.copy(); int max = Math.Max(v.numberLength, u.numberLength); r = new BigInteger(1, 1, new int[max + 1]); s = new BigInteger(1, 1, new int[max + 1]); s.digits[0] = 1; // s == 1 && v == 0 int k = 0; int lsbu = u.getLowestSetBit(); int lsbv = v.getLowestSetBit(); int toShift; if (lsbu > lsbv) { BitLevel.inplaceShiftRight(u, lsbu); BitLevel.inplaceShiftRight(v, lsbv); BitLevel.inplaceShiftLeft(r, lsbv); k += lsbu - lsbv; } else { BitLevel.inplaceShiftRight(u, lsbu); BitLevel.inplaceShiftRight(v, lsbv); BitLevel.inplaceShiftLeft(s, lsbu); k += lsbv - lsbu; } r.sign = 1; while (v.signum() > 0) { // INV v >= 0, u >= 0, v odd, u odd (except last iteration when v is even (0)) while (u.compareTo(v) > BigInteger.EQUALS) { Elementary.inplaceSubtract(u, v); toShift = u.getLowestSetBit(); BitLevel.inplaceShiftRight(u, toShift); Elementary.inplaceAdd(r, s); BitLevel.inplaceShiftLeft(s, toShift); k += toShift; } while (u.compareTo(v) <= BigInteger.EQUALS) { Elementary.inplaceSubtract(v, u); if (v.signum() == 0) { break; } toShift = v.getLowestSetBit(); BitLevel.inplaceShiftRight(v, toShift); Elementary.inplaceAdd(s, r); BitLevel.inplaceShiftLeft(r, toShift); k += toShift; } } if (!u.isOne()) { // in u is stored the gcd throw new ArithmeticException("BigInteger not invertible."); } if (r.compareTo(p) >= BigInteger.EQUALS) { Elementary.inplaceSubtract(r, p); } r = p.subtract(r); // Have pair: ((BigInteger)r, (Integer)k) where r == a^(-1) * 2^k mod (module) int n1 = calcN(p); if (k > m) { r = monPro(r, BigInteger.ONE, p, n1); k = k - m; } r = monPro(r, BigInteger.getPowerOfTwo(m - k), p, n1); return(r); }
internal static BigInteger gcdBinary(BigInteger op1, BigInteger op2) { // PRE: (op1 > 0) and (op2 > 0) /* * Divide both number the maximal possible times by 2 without rounding * gcd(2*a, 2*b) = 2 * gcd(a,b) */ int lsb1 = op1.getLowestSetBit(); int lsb2 = op2.getLowestSetBit(); int pow2Count = Math.Min(lsb1, lsb2); BitLevel.inplaceShiftRight(op1, lsb1); BitLevel.inplaceShiftRight(op2, lsb2); BigInteger swap; // I want op2 > op1 if (op1.compareTo(op2) == BigInteger.GREATER) { swap = op1; op1 = op2; op2 = swap; } do // INV: op2 >= op1 && both are odd unless op1 = 0 // Optimization for small operands // (op2.bitLength() < 64) implies by INV (op1.bitLength() < 64) { if ((op2.numberLength == 1) || ((op2.numberLength == 2) && (op2.digits[1] > 0))) { op2 = BigInteger.valueOf(Division.gcdBinary(op1.longValue(), op2.longValue())); break; } // Implements one step of the Euclidean algorithm // To reduce one operand if it's much smaller than the other one if (op2.numberLength > op1.numberLength * 1.2) { op2 = op2.remainder(op1); if (op2.signum() != 0) { BitLevel.inplaceShiftRight(op2, op2.getLowestSetBit()); } } else { // Use Knuth's algorithm of successive subtract and shifting do { Elementary.inplaceSubtract(op2, op1); // both are odd BitLevel.inplaceShiftRight(op2, op2.getLowestSetBit()); // op2 is even } while (op2.compareTo(op1) >= BigInteger.EQUALS); } // now op1 >= op2 swap = op2; op2 = op1; op1 = swap; } while (op1.sign != 0); return(op2.shiftLeft(pow2Count)); }