} // SMS /// <summary> /// This is the divide-and-conquer implementation of the longes common-subsequence (LCS) /// algorithm. /// The published algorithm passes recursively parts of the A and B sequences. /// To avoid copying these arrays the lower and upper bounds are passed while the sequences stay constant. /// </summary> /// <param name="DataA">sequence A</param> /// <param name="LowerA">lower bound of the actual range in DataA</param> /// <param name="UpperA">upper bound of the actual range in DataA (exclusive)</param> /// <param name="DataB">sequence B</param> /// <param name="LowerB">lower bound of the actual range in DataB</param> /// <param name="UpperB">upper bound of the actual range in DataB (exclusive)</param> /// <param name="DownVector">a vector for the (0,0) to (x,y) search. Passed as a parameter for speed reasons.</param> /// <param name="UpVector">a vector for the (u,v) to (N,M) search. Passed as a parameter for speed reasons.</param> private static void LongesCommonSequence( DiffData DataA, int LowerA, int UpperA, DiffData DataB, int LowerB, int UpperB, int[] DownVector, int[] UpVector ) { // Debug.Write(2, "LCS", String.Format("Analyse the box: A[{0}-{1}] to B[{2}-{3}]", LowerA, UpperA, LowerB, UpperB)); // Fast walkthrough equal lines at the start while ( LowerA < UpperA && LowerB < UpperB && DataA.data[LowerA] == DataB.data[LowerB] ) { LowerA++; LowerB++; } // Fast walkthrough equal lines at the end while ( LowerA < UpperA && LowerB < UpperB && DataA.data[UpperA - 1] == DataB.data[UpperB - 1] ) { --UpperA; --UpperB; } if ( LowerA == UpperA ) { // mark as inserted lines. while ( LowerB < UpperB ) DataB.modified[LowerB++] = true; } else if ( LowerB == UpperB ) { // mark as deleted lines. while ( LowerA < UpperA ) DataA.modified[LowerA++] = true; } else { // Find the middle snakea and length of an optimal path for A and B SmsReturnData smsrd = ShortestMiddleSnake( DataA, LowerA, UpperA, DataB, LowerB, UpperB, DownVector, UpVector ); // Debug.Write(2, "MiddleSnakeData", String.Format("{0},{1}", smsrd.x, smsrd.y)); // The path is from LowerX to (x,y) and (x,y) to UpperX LongesCommonSequence( DataA, LowerA, smsrd.x, DataB, LowerB, smsrd.y, DownVector, UpVector ); LongesCommonSequence( DataA, smsrd.x, UpperA, DataB, smsrd.y, UpperB, DownVector, UpVector ); // 2002.09.20: no need for 2 points } } // LongesCommonSequence
/// <summary> /// Find the difference in 2 text documents, comparing by textlines. /// The algorithm itself is comparing 2 arrays of numbers so when comparing 2 text documents /// each line is converted into a (hash) number. This hash-value is computed by storing all /// textlines into a common hashtable so i can find dublicates in there, and generating a /// new number each time a new textline is inserted. /// </summary> /// <param name="TextA">A-version of the text (usualy the old one)</param> /// <param name="TextB">B-version of the text (usualy the new one)</param> /// <param name="trimSpace">When set to true, all leading and trailing whitespace characters are stripped out before the comparation is done.</param> /// <param name="ignoreSpace">When set to true, all whitespace characters are converted to a single space character before the comparation is done.</param> /// <param name="ignoreCase">When set to true, all characters are converted to their lowercase equivivalence before the comparation is done.</param> /// <returns>Returns a array of Items that describe the differences.</returns> public static Item[] DiffText( List<string> TextA, List<string> TextB, bool trimSpace, bool ignoreSpace, bool ignoreCase ) { Hashtable codeHash = new Hashtable( TextA.Count + TextB.Count ); DiffData DataA = new DiffData( GenerateDiffCodes( TextA, codeHash, trimSpace, ignoreSpace, ignoreCase ) ); DiffData DataB = new DiffData( GenerateDiffCodes( TextB, codeHash, trimSpace, ignoreSpace, ignoreCase ) ); codeHash = null; // free up hashtable memory (maybe) int combinedLength = DataA.Length + DataB.Length + 1; /// vector for the (0,0) to (x,y) search int[] DownVector = new int[2 * combinedLength + 2]; /// vector for the (u,v) to (N,M) search int[] UpVector = new int[2 * combinedLength + 2]; LongesCommonSequence( DataA, 0, DataA.Length, DataB, 0, DataB.Length, DownVector, UpVector ); Optimize( DataA ); Optimize( DataB ); return CreateDiffs( DataA, DataB ); } // DiffText
} // DiffText /// <summary> /// If a sequence of modified lines starts with a line that contains the same content /// as the line that appends the changes, the difference sequence is modified so that the /// appended line and not the starting line is marked as modified. /// This leads to more readable diff sequences when comparing text files. /// </summary> /// <param name="Data">A Diff data buffer containing the identified changes.</param> private static void Optimize( DiffData Data ) { int StartPos, EndPos; StartPos = 0; while ( StartPos < Data.Length ) { while ( (StartPos < Data.Length) && (Data.modified[StartPos] == false) ) StartPos++; EndPos = StartPos; while ( (EndPos < Data.Length) && (Data.modified[EndPos] == true) ) EndPos++; if ( (EndPos < Data.Length) && (Data.data[StartPos] == Data.data[EndPos]) ) { Data.modified[StartPos] = false; Data.modified[EndPos] = true; } else { StartPos = EndPos; } // if } // while } // Optimize
} // GenerateDiffCodes /// <summary> /// This is the algorithm to find the Shortest Middle Snake (SMS). /// </summary> /// <param name="DataA">sequence A</param> /// <param name="LowerA">lower bound of the actual range in DataA</param> /// <param name="UpperA">upper bound of the actual range in DataA (exclusive)</param> /// <param name="DataB">sequence B</param> /// <param name="LowerB">lower bound of the actual range in DataB</param> /// <param name="UpperB">upper bound of the actual range in DataB (exclusive)</param> /// <param name="DownVector">a vector for the (0,0) to (x,y) search. Passed as a parameter for speed reasons.</param> /// <param name="UpVector">a vector for the (u,v) to (N,M) search. Passed as a parameter for speed reasons.</param> /// <returns>a MiddleSnakeData record containing x,y and u,v</returns> private static SmsReturnData ShortestMiddleSnake( DiffData DataA, int LowerA, int UpperA, DiffData DataB, int LowerB, int UpperB, int[] DownVector, int[] UpVector ) { SmsReturnData ret; int MAX = DataA.Length + DataB.Length + 1; int DownK = LowerA - LowerB; // the k-line to start the forward search int UpK = UpperA - UpperB; // the k-line to start the reverse search int Delta = (UpperA - LowerA) - (UpperB - LowerB); bool oddDelta = (Delta & 1) != 0; // The vectors in the publication accepts negative indexes. the vectors implemented here are 0-based // and are access using a specific offset: UpOffset UpVector and DownOffset for DownVektor int DownOffset = MAX - DownK; int UpOffset = MAX - UpK; int MaxD = ((UpperA - LowerA + UpperB - LowerB) / 2) + 1; // Debug.Write(2, "SMS", String.Format("Search the box: A[{0}-{1}] to B[{2}-{3}]", LowerA, UpperA, LowerB, UpperB)); // init vectors DownVector[DownOffset + DownK + 1] = LowerA; UpVector[UpOffset + UpK - 1] = UpperA; for ( int D = 0; D <= MaxD; D++ ) { // Extend the forward path. for ( int k = DownK - D; k <= DownK + D; k += 2 ) { // Debug.Write(0, "SMS", "extend forward path " + k.ToString()); // find the only or better starting point int x, y; if ( k == DownK - D ) { x = DownVector[DownOffset + k + 1]; // down } else { x = DownVector[DownOffset + k - 1] + 1; // a step to the right if ( (k < DownK + D) && (DownVector[DownOffset + k + 1] >= x) ) x = DownVector[DownOffset + k + 1]; // down } y = x - k; // find the end of the furthest reaching forward D-path in diagonal k. while ( (x < UpperA) && (y < UpperB) && (DataA.data[x] == DataB.data[y]) ) { x++; y++; } DownVector[DownOffset + k] = x; // overlap ? if ( oddDelta && (UpK - D < k) && (k < UpK + D) ) { if ( UpVector[UpOffset + k] <= DownVector[DownOffset + k] ) { ret.x = DownVector[DownOffset + k]; ret.y = DownVector[DownOffset + k] - k; // ret.u = UpVector[UpOffset + k]; // 2002.09.20: no need for 2 points // ret.v = UpVector[UpOffset + k] - k; return (ret); } // if } // if } // for k // Extend the reverse path. for ( int k = UpK - D; k <= UpK + D; k += 2 ) { // Debug.Write(0, "SMS", "extend reverse path " + k.ToString()); // find the only or better starting point int x, y; if ( k == UpK + D ) { x = UpVector[UpOffset + k - 1]; // up } else { x = UpVector[UpOffset + k + 1] - 1; // left if ( (k > UpK - D) && (UpVector[UpOffset + k - 1] < x) ) x = UpVector[UpOffset + k - 1]; // up } // if y = x - k; while ( (x > LowerA) && (y > LowerB) && (DataA.data[x - 1] == DataB.data[y - 1]) ) { x--; y--; // diagonal } UpVector[UpOffset + k] = x; // overlap ? if ( !oddDelta && (DownK - D <= k) && (k <= DownK + D) ) { if ( UpVector[UpOffset + k] <= DownVector[DownOffset + k] ) { ret.x = DownVector[DownOffset + k]; ret.y = DownVector[DownOffset + k] - k; // ret.u = UpVector[UpOffset + k]; // 2002.09.20: no need for 2 points // ret.v = UpVector[UpOffset + k] - k; return (ret); } // if } // if } // for k } // for D throw new ApplicationException( "the algorithm should never come here." ); } // SMS