Exemple #1
0
        /// <summary>
        /// Returns a (deterministic) automaton that accepts the complement of the language of the
        /// given automaton.
        /// </summary>
        /// <param name="a">The automaton.</param>
        /// <returns>A (deterministic) automaton that accepts the complement of the language of the
        /// given automaton.</returns>
        /// <remarks>
        /// Complexity: linear in number of states (if already deterministic).
        /// </remarks>
        public static Automaton Complement(Automaton a)
        {
            a = a.CloneExpandedIfRequired();
            a.Determinize();
            a.Totalize();
            foreach (State p in a.GetStates())
            {
                p.Accept = !p.Accept;
            }

            a.RemoveDeadTransitions();
            return(a);
        }
Exemple #2
0
        /// <summary>
        /// Returns a (deterministic) automaton that accepts the complement of the language of the 
        /// given automaton.
        /// </summary>
        /// <param name="a">The automaton.</param>
        /// <returns>A (deterministic) automaton that accepts the complement of the language of the 
        /// given automaton.</returns>
        /// <remarks>
        /// Complexity: linear in number of states (if already deterministic).
        /// </remarks>
        public static Automaton Complement(Automaton a)
        {
            a = a.CloneExpandedIfRequired();
            a.Determinize();
            a.Totalize();
            foreach (State p in a.GetStates())
            {
                p.Accept = !p.Accept;
            }

            a.RemoveDeadTransitions();
            return a;
        }
        internal static void MinimizeHopcroft(Automaton a)
        {
            a.Determinize();
            IList <Transition> tr = a.Initial.Transitions;

            if (tr.Count == 1)
            {
                Transition t = tr[0];
                if (t.To == a.Initial && t.Min == char.MinValue && t.Max == char.MaxValue)
                {
                    return;
                }
            }

            a.Totalize();

            // Make arrays for numbered states and effective alphabet.
            HashSet <State> ss     = a.GetStates();
            var             states = new State[ss.Count];
            int             number = 0;

            foreach (State q in ss)
            {
                states[number] = q;
                q.Number       = number++;
            }

            char[] sigma = a.GetStartPoints();

            // Initialize data structures.
            var reverse = new List <List <LinkedList <State> > >();

            foreach (State s in states)
            {
                var v = new List <LinkedList <State> >();
                Initialize(ref v, sigma.Length);
                reverse.Add(v);
            }

            var reverseNonempty = new bool[states.Length, sigma.Length];

            var partition = new List <LinkedList <State> >();

            Initialize(ref partition, states.Length);

            var block    = new int[states.Length];
            var active   = new StateList[states.Length, sigma.Length];
            var active2  = new StateListNode[states.Length, sigma.Length];
            var pending  = new LinkedList <IntPair>();
            var pending2 = new bool[sigma.Length, states.Length];
            var split    = new List <State>();
            var split2   = new bool[states.Length];
            var refine   = new List <int>();
            var refine2  = new bool[states.Length];

            var splitblock = new List <List <State> >();

            Initialize(ref splitblock, states.Length);

            for (int q = 0; q < states.Length; q++)
            {
                splitblock[q] = new List <State>();
                partition[q]  = new LinkedList <State>();
                for (int x = 0; x < sigma.Length; x++)
                {
                    reverse[q][x] = new LinkedList <State>();
                    active[q, x]  = new StateList();
                }
            }

            // Find initial partition and reverse edges.
            foreach (State qq in states)
            {
                int j = qq.Accept ? 0 : 1;

                partition[j].AddLast(qq);
                block[qq.Number] = j;
                for (int x = 0; x < sigma.Length; x++)
                {
                    char  y = sigma[x];
                    State p = qq.Step(y);
                    reverse[p.Number][x].AddLast(qq);
                    reverseNonempty[p.Number, x] = true;
                }
            }

            // Initialize active sets.
            for (int j = 0; j <= 1; j++)
            {
                for (int x = 0; x < sigma.Length; x++)
                {
                    foreach (State qq in partition[j])
                    {
                        if (reverseNonempty[qq.Number, x])
                        {
                            active2[qq.Number, x] = active[j, x].Add(qq);
                        }
                    }
                }
            }

            // Initialize pending.
            for (int x = 0; x < sigma.Length; x++)
            {
                int a0 = active[0, x].Size;
                int a1 = active[1, x].Size;
                int j  = a0 <= a1 ? 0 : 1;
                pending.AddLast(new IntPair(j, x));
                pending2[x, j] = true;
            }

            // Process pending until fixed point.
            int k = 2;

            while (pending.Count > 0)
            {
                IntPair ip = pending.RemoveAndReturnFirst();
                int     p  = ip.N1;
                int     x  = ip.N2;
                pending2[x, p] = false;

                // Find states that need to be split off their blocks.
                for (StateListNode m = active[p, x].First; m != null; m = m.Next)
                {
                    foreach (State s in reverse[m.State.Number][x])
                    {
                        if (!split2[s.Number])
                        {
                            split2[s.Number] = true;
                            split.Add(s);
                            int j = block[s.Number];
                            splitblock[j].Add(s);
                            if (!refine2[j])
                            {
                                refine2[j] = true;
                                refine.Add(j);
                            }
                        }
                    }
                }

                // Refine blocks.
                foreach (int j in refine)
                {
                    if (splitblock[j].Count < partition[j].Count)
                    {
                        LinkedList <State> b1 = partition[j];
                        LinkedList <State> b2 = partition[k];
                        foreach (State s in splitblock[j])
                        {
                            b1.Remove(s);
                            b2.AddLast(s);
                            block[s.Number] = k;
                            for (int c = 0; c < sigma.Length; c++)
                            {
                                StateListNode sn = active2[s.Number, c];
                                if (sn != null && sn.StateList == active[j, c])
                                {
                                    sn.Remove();
                                    active2[s.Number, c] = active[k, c].Add(s);
                                }
                            }
                        }

                        // Update pending.
                        for (int c = 0; c < sigma.Length; c++)
                        {
                            int aj = active[j, c].Size;
                            int ak = active[k, c].Size;
                            if (!pending2[c, j] && 0 < aj && aj <= ak)
                            {
                                pending2[c, j] = true;
                                pending.AddLast(new IntPair(j, c));
                            }
                            else
                            {
                                pending2[c, k] = true;
                                pending.AddLast(new IntPair(k, c));
                            }
                        }

                        k++;
                    }

                    foreach (State s in splitblock[j])
                    {
                        split2[s.Number] = false;
                    }

                    refine2[j] = false;
                    splitblock[j].Clear();
                }

                split.Clear();
                refine.Clear();
            }

            // Make a new state for each equivalence class, set initial state.
            var newstates = new State[k];

            for (int n = 0; n < newstates.Length; n++)
            {
                var s = new State();
                newstates[n] = s;
                foreach (State q in partition[n])
                {
                    if (q == a.Initial)
                    {
                        a.Initial = s;
                    }

                    s.Accept = q.Accept;
                    s.Number = q.Number; // Select representative.
                    q.Number = n;
                }
            }

            // Build transitions and set acceptance.
            foreach (State s in newstates)
            {
                s.Accept = states[s.Number].Accept;
                foreach (Transition t in states[s.Number].Transitions)
                {
                    s.Transitions.Add(new Transition(t.Min, t.Max, newstates[t.To.Number]));
                }
            }

            a.RemoveDeadTransitions();
        }
        /// <summary>
        /// Minimizes the given automaton using Huffman's algorithm.
        /// </summary>
        /// <param name="a">The automaton.</param>
        internal static void MinimizeHuffman(Automaton a)
        {
            a.Determinize();
            a.Totalize();
            HashSet <State> ss          = a.GetStates();
            var             transitions = new Transition[ss.Count][];

            State[] states = ss.ToArray();

            var mark     = new List <List <bool> >();
            var triggers = new List <List <HashSet <IntPair> > >();

            foreach (State t in states)
            {
                var v = new List <HashSet <IntPair> >();
                Initialize(ref v, states.Length);
                triggers.Add(v);
            }

            // Initialize marks based on acceptance status and find transition arrays.
            for (int n1 = 0; n1 < states.Length; n1++)
            {
                states[n1].Number = n1;
                transitions[n1]   = states[n1].GetSortedTransitions(false).ToArray();
                for (int n2 = n1 + 1; n2 < states.Length; n2++)
                {
                    if (states[n1].Accept != states[n2].Accept)
                    {
                        mark[n1][n2] = true;
                    }
                }
            }

            // For all pairs, see if states agree.
            for (int n1 = 0; n1 < states.Length; n1++)
            {
                for (int n2 = n1 + 1; n2 < states.Length; n2++)
                {
                    if (!mark[n1][n2])
                    {
                        if (MinimizationOperations.StatesAgree(transitions, mark, n1, n2))
                        {
                            MinimizationOperations.AddTriggers(transitions, triggers, n1, n2);
                        }
                        else
                        {
                            MinimizationOperations.MarkPair(mark, triggers, n1, n2);
                        }
                    }
                }
            }

            // Assign equivalence class numbers to states.
            int numclasses = 0;

            foreach (State t in states)
            {
                t.Number = -1;
            }

            for (int n1 = 0; n1 < states.Length; n1++)
            {
                if (states[n1].Number == -1)
                {
                    states[n1].Number = numclasses;
                    for (int n2 = n1 + 1; n2 < states.Length; n2++)
                    {
                        if (!mark[n1][n2])
                        {
                            states[n2].Number = numclasses;
                        }
                    }

                    numclasses++;
                }
            }

            // Make a new state for each equivalence class.
            var newstates = new State[numclasses];

            for (int n = 0; n < numclasses; n++)
            {
                newstates[n] = new State();
            }

            // Select a class representative for each class and find the new initial state.
            for (int n = 0; n < states.Length; n++)
            {
                newstates[states[n].Number].Number = n;
                if (states[n] == a.Initial)
                {
                    a.Initial = newstates[states[n].Number];
                }
            }

            // Build transitions and set acceptance.
            for (int n = 0; n < numclasses; n++)
            {
                State s = newstates[n];
                s.Accept = states[s.Number].Accept;
                foreach (Transition t in states[s.Number].Transitions)
                {
                    s.Transitions.Add(new Transition(t.Min, t.Max, newstates[t.To.Number]));
                }
            }

            a.RemoveDeadTransitions();
        }