/// <summary> /// Constructs an active learning instance with a specified data set and model instance. /// </summary> /// <param name="data">The data.</param> /// <param name="model">The model instance.</param> /// <param name="results">The results instance.</param> /// <param name="numCommunities">The number of communities (only for CBCC).</param> public ActiveLearning(IList<Datum> data, BCC model, Results results, int numCommunities) { this.bcc = model; CBCC communityModel = model as CBCC; IsCommunityModel = (communityModel != null); ActiveLearningResults = results; BatchResults = results; isExperimentCompleted = false; // Builds the full matrix of data from every task and worker PredictionData = new List<Datum>(); }
/// <summary> /// Runs a model with the full gold set. /// </summary> /// <param name="dataSet">The dataset name.</param> /// <param name="data">The data.</param> /// <param name="runType">The model run type.</param> /// <param name="model">The model instance.</param> /// <param name="numCommunities">The number of communities (only for CBCC).</param> /// <returns>The inference results</returns> public static Results RunGold(string dataSet, IList<Datum> data, RunType runType, BCC model, int numCommunities = 2) { string modelName = Program.GetModelName(dataSet, runType); Results results = new Results(); switch (runType) { case RunType.VoteDistribution: results.RunMajorityVote(data, data, true, true); break; case RunType.MajorityVote: results.RunMajorityVote(data, data, true, false); break; case RunType.DawidSkene: results.RunDawidSkene(data, data, true); break; default: results.RunBCC(modelName, data, data, model, RunMode.ClearResults, true, numCommunities, false, false); break; } return results; }
/// <summary> /// Runs the standard active learning procedure in parallel on an array of model instances and an input data set. /// </summary> /// <param name="data">The data.</param> /// <param name="modelName">The model name.</param> /// <param name="runType">The model run type.</param> /// <param name="model">The model instance.</param> /// <param name="taskSelectionMethod">The method for selecting tasks (Random / Entropy).</param> /// <param name="workerSelectionMethod">The method for selecting workers (only Random is implemented).</param> /// <param name="numIncremData">The number of data points to add at each iteration.</param> /// <param name="communityCount">The number of communities (only for CBCC).</param> /// <param name="initialNumLabelsPerTask">The initial number of exploratory labels that are randomly selected for each task.</param> public static void RunParallelActiveLearning(IList<Datum> data, string[] modelName, RunType[] runType, BCC[] model, TaskSelectionMethod[] taskSelectionMethod, WorkerSelectionMethod[] workerSelectionMethod, int communityCount = -1, int initialNumLabelsPerTask = 1, int numIncremData = 1) { int numModels = runType.Length; Stopwatch stopWatch = new Stopwatch(); int totalLabels = data.Count(); // Dictionary keyed by task Id, with randomly order labelings var groupedRandomisedData = data.GroupBy(d => d.TaskId). Select(g => { var arr = g.ToArray(); int cnt = arr.Length; var perm = Rand.Perm(cnt); return new { key = g.Key, arr = g.Select((t, i) => arr[perm[i]]).ToArray() }; }).ToDictionary(a => a.key, a => a.arr); // Dictionary keyed by task Id, with label counts Dictionary<string, int> totalCounts = groupedRandomisedData.ToDictionary(kvp => kvp.Key, kvp => kvp.Value.Length); Dictionary<string, int> currentCounts = groupedRandomisedData.ToDictionary(kvp => kvp.Key, kvp => initialNumLabelsPerTask); // Keyed by task, value is a HashSet containing all the remaining workers with a label - workers are removed after adding a new datum Dictionary<string, HashSet<string>> remainingWorkersPerTask = groupedRandomisedData.ToDictionary(kvp => kvp.Key, kvp => new HashSet<string>(kvp.Value.Select(dat => dat.WorkerId))); int numTaskIds = totalCounts.Count(); int totalInstances = data.Count - initialNumLabelsPerTask * numTaskIds; //throw an exception if the totalInstances is less than or equals to zero if (totalInstances <= 0) { throw new System.Exception("The variable 'totalInstances' should be greater than zero"); } //only creates accuracy list when it's null (for GUI Use) if (accuracyArray == null) { accuracyArray = Util.ArrayInit<List<double>>(numModels, i => new List<double>()); } List<double>[] avgRecallArray = Util.ArrayInit(numModels, i => new List<double>()); taskValueListArray = Util.ArrayInit(numModels, i => new List<ActiveLearningResult>()); int[] indexArray = new int[numModels]; Debug.WriteLine("Parallel Active Learning"); Debug.WriteLine("\tModel\tAcc\tAvgRec"); // Get initial data //make the results variable be global for GUi results = Util.ArrayInit<Results>(numModels, i => new Results()); List<Datum> subData = GetSubdata(groupedRandomisedData, currentCounts, remainingWorkersPerTask); List<Datum>[] subDataArray = Util.ArrayInit<List<Datum>>(numModels, i => new List<Datum>(subData)); List<Datum>[] nextData = new List<Datum>[numModels]; ActiveLearning[] activeLearning = new ActiveLearning[numModels]; isExperimentCompleted = false; // Main loop for (int iter = 0; ; iter++) { bool calculateAccuracy = true; bool doSnapShot = iter % 100 == 0; // Frequency of snapshots //stop Active Learning if the user requests to stop if (isExperimentCompleted) { return; } // Run all the models for (int indexModel = 0; indexModel < numModels; indexModel++ ) { if (subDataArray[indexModel] != null || nextData[indexModel] != null) { switch (runType[indexModel]) { case RunType.VoteDistribution: results[indexModel].RunMajorityVote(subDataArray[indexModel], data, calculateAccuracy, true); break; case RunType.MajorityVote: results[indexModel].RunMajorityVote(subDataArray[indexModel], data, calculateAccuracy, false); break; case RunType.DawidSkene: results[indexModel].RunDawidSkene(subDataArray[indexModel], data, calculateAccuracy); break; default: // Run BCC models results[indexModel].RunBCC(modelName[indexModel], subDataArray[indexModel], data, model[indexModel], RunMode.ClearResults, calculateAccuracy, communityCount, false); break; } } //end for running all the data if (activeLearning[indexModel] == null) { activeLearning[indexModel] = new ActiveLearning(data, model[indexModel], results[indexModel], communityCount); } else { activeLearning[indexModel].UpdateActiveLearningResults(results[indexModel]); } // Select next task Dictionary<string, ActiveLearningResult> TaskUtility = new Dictionary<string, ActiveLearningResult>(); switch (taskSelectionMethod[indexModel]) { case TaskSelectionMethod.EntropyTask: TaskUtility = activeLearning[indexModel].EntropyTrueLabel(); break; case TaskSelectionMethod.RandomTask: TaskUtility = data.GroupBy(d => d.TaskId).ToDictionary(a => a.Key, a => new ActiveLearningResult { TaskValue = Rand.Double() }); break; case TaskSelectionMethod.UniformTask: //add task value according to the count left TaskUtility = currentCounts.OrderBy(kvp => kvp.Value).ToDictionary(a => a.Key, a => new ActiveLearningResult { TaskValue = 1 }); break; default: // Entropy task selection TaskUtility = activeLearning[indexModel].EntropyTrueLabel(); break; } // We create a list of worker utilities Dictionary<string, double> WorkerAccuracy = null; // Best worker selection is only allowed for methods that infer worker confusion matrices. if (results[indexModel].WorkerConfusionMatrix == null) workerSelectionMethod[indexModel] = WorkerSelectionMethod.RandomWorker; switch (workerSelectionMethod[indexModel]) { case WorkerSelectionMethod.BestWorker: // Assign worker accuracies to the maximum value on the diagonal of the confusion matrix (conservative approach). // Alternative ways are also possible. WorkerAccuracy = results[indexModel].WorkerConfusionMatrixMean.ToDictionary( kvp => kvp.Key, kvp => Results.GetConfusionMatrixDiagonal(kvp.Value).Max()); break; case WorkerSelectionMethod.RandomWorker: // Assign worker accuracies to random values WorkerAccuracy = results[indexModel].FullMapping.WorkerIdToIndex.ToDictionary(kvp => kvp.Key, kvp => Rand.Double()); break; default: throw new ApplicationException("No worker selection method selected"); } // Create a list of tuples (TaskId, WorkerId, ActiveLearningResult) List<Tuple<string, string, ActiveLearningResult>> LabelValue = new List<Tuple<string, string, ActiveLearningResult>>(); foreach (var kvp in TaskUtility) { foreach (var workerId in remainingWorkersPerTask[kvp.Key]) { var labelValue = new ActiveLearningResult { WorkerId = workerId, TaskId = kvp.Key, TaskValue = kvp.Value.TaskValue, WorkerValue = WorkerAccuracy[workerId] }; LabelValue.Add(Tuple.Create(labelValue.TaskId, labelValue.WorkerId, labelValue)); } } // Increment tha active set with new data nextData[indexModel] = GetNextData(groupedRandomisedData, LabelValue, currentCounts, totalCounts, remainingWorkersPerTask, numIncremData); if (nextData[indexModel] == null || nextData[indexModel].Count == 0) break; indexArray[indexModel] += nextData[indexModel].Count; subDataArray[indexModel].AddRange(nextData[indexModel]); // Logs if (calculateAccuracy) { accuracyArray[indexModel].Add(results[indexModel].Accuracy); avgRecallArray[indexModel].Add(results[indexModel].AvgRecall); if (TaskUtility == null) { var sortedLabelValue = LabelValue.OrderByDescending(kvp => kvp.Item3.TaskValue).ToArray(); taskValueListArray[indexModel].Add(sortedLabelValue.First().Item3); } else { //Adding WorkerId into taskValueListArray ActiveLearningResult nextTaskValueItem = TaskUtility[nextData[indexModel].First().TaskId]; nextTaskValueItem.WorkerId = nextData[indexModel].First().WorkerId; nextTaskValueItem.TaskId = nextData[indexModel].First().TaskId; taskValueListArray[indexModel].Add(nextTaskValueItem); } if (doSnapShot) { Debug.WriteLine("{0} of {1}:\t{2}\t{3:0.000}\t{4:0.0000}", indexArray[indexModel], totalInstances, modelName[indexModel], accuracyArray[indexModel].Last(), avgRecallArray[indexModel].Last()); } } }//end of models }//end for all data }
/// <summary> /// Runs the standard active learning procedure on a model instance and an input data set. /// </summary> /// <param name="data">The data.</param> /// <param name="modelName">The model name.</param> /// <param name="runType">The model run type.</param> /// <param name="model">The model instance.</param> /// <param name="taskSelectionMethod">The method for selecting tasks (Random / Entropy).</param> /// <param name="workerSelectionMethod">The method for selecting workers (only Random is implemented).</param> /// <param name="resultsDir">The directory to save the log files.</param> /// <param name="communityCount">The number of communities (only for CBCC).</param> /// <param name="initialNumLabelsPerTask">The initial number of exploratory labels that are randomly selected for each task.</param> /// <param name="numIncremData">The number of data points to add at each round.</param> public static void RunActiveLearning( IList<Datum> data, string modelName, RunType runType, BCC model, TaskSelectionMethod taskSelectionMethod, WorkerSelectionMethod workerSelectionMethod, string resultsDir, int communityCount = -1, int initialNumLabelsPerTask = 1, int numIncremData = 1) { //Count elapsed time Stopwatch stopWatchTotal = new Stopwatch(); stopWatchTotal.Start(); int totalLabels = data.Count(); // Dictionary keyed by task Id, with randomly order labelings var groupedRandomisedData = data.GroupBy(d => d.TaskId). Select(g => { var arr = g.ToArray(); int cnt = arr.Length; var perm = Rand.Perm(cnt); return new { key = g.Key, arr = g.Select((t, i) => arr[perm[i]]).ToArray() }; }).ToDictionary(a => a.key, a => a.arr); // Dictionary keyed by task Id, with label counts Dictionary<string, int> totalCounts = groupedRandomisedData.ToDictionary(kvp => kvp.Key, kvp => kvp.Value.Length); // Keyed by task, value is a HashSet containing all the remaining workers with a label - workers are removed after adding a new datum Dictionary<string, HashSet<string>> remainingWorkersPerTask = groupedRandomisedData.ToDictionary(kvp => kvp.Key, kvp => new HashSet<string>(kvp.Value.Select(dat => dat.WorkerId))); int numTaskIds = totalCounts.Count(); int totalInstances = initialNumLabelsPerTask > 0 ? data.Count - initialNumLabelsPerTask * numTaskIds : data.Count - numIncremData; //throw an exception if the totalInstances is less than or equals to zero if (totalInstances <= 0) { throw new System.Exception("The variable 'totalInstances' should be greater than zero"); } string[] WorkerIds = data.Select(d => d.WorkerId).Distinct().ToArray(); //only creat accuracy list when it's null (for GUI Use) if (accuracy == null) { accuracy = new List<double>(); } List<double> avgRecall = new List<double>(); //List<ActiveLearningResult> taskValueList = new List<ActiveLearningResult>(); taskValueList = new List<ActiveLearningResult>(); int index = 0; Console.WriteLine("Active Learning: {0}", modelName); Console.WriteLine("\t\t\t\t\t\tAcc\tAvgRec"); // Get initial data Results results = new Results(); Dictionary<string, int> currentCounts = groupedRandomisedData.ToDictionary(kvp => kvp.Key, kvp => initialNumLabelsPerTask); List<Datum> subData = GetSubdata(groupedRandomisedData, currentCounts, remainingWorkersPerTask); var s = remainingWorkersPerTask.Select(w => w.Value.Count).Sum(); List<Datum> nextData = null; ActiveLearning activeLearning = null; isExperimentCompleted = false; for (int iter = 0; ; iter++) //run until data run out { bool calculateAccuracy = true; bool doSnapShot = iter % 1 == 0; if (subData != null || nextData != null) { switch (runType) { case RunType.VoteDistribution: results.RunMajorityVote(subData, data, calculateAccuracy, true); break; case RunType.MajorityVote: results.RunMajorityVote(subData, data, calculateAccuracy, false); break; case RunType.DawidSkene: results.RunDawidSkene(subData, data, calculateAccuracy); break; default: // Run BCC models results.RunBCC(modelName, subData, data, model, RunMode.ClearResults, calculateAccuracy, communityCount, false); break; } } if (activeLearning == null) { activeLearning = new ActiveLearning(data, model, results, communityCount); } else { activeLearning.UpdateActiveLearningResults(results); } // We create a list of task utilities // TaskValue: Dictionary keyed by task, the value is an active learning result. Dictionary<string, ActiveLearningResult> TaskUtility = null; switch (taskSelectionMethod) { case TaskSelectionMethod.EntropyTask: TaskUtility = activeLearning.EntropyTrueLabel(); break; case TaskSelectionMethod.RandomTask: TaskUtility = data.GroupBy(d => d.TaskId).ToDictionary(a => a.Key, a => new ActiveLearningResult { TaskValue = Rand.Double() }); break; case TaskSelectionMethod.UniformTask: // Reproduce uniform task selection by picking the task with the lowest number of current labels. That is, minus the current count. TaskUtility = currentCounts.OrderBy(kvp => kvp.Value).ToDictionary(a => a.Key, a => new ActiveLearningResult { TaskId = a.Key, TaskValue = -a.Value }); break; default: TaskUtility = activeLearning.EntropyTrueLabel(); break; } // We create a list of worker utilities. Dictionary<string, double> WorkerAccuracy = null; // Best worker selection is only allowed for methods that infer worker confusion matrices. if (results.WorkerConfusionMatrix == null) workerSelectionMethod = WorkerSelectionMethod.RandomWorker; switch (workerSelectionMethod) { case WorkerSelectionMethod.BestWorker: // Assign worker accuracies to the maximum value on the diagonal of the confusion matrix (conservative approach). // Alternative ways are also possible. WorkerAccuracy = results.WorkerConfusionMatrixMean.ToDictionary( kvp => kvp.Key, kvp => Results.GetConfusionMatrixDiagonal(kvp.Value).Max()); break; case WorkerSelectionMethod.RandomWorker: // Assign worker accuracies to random values WorkerAccuracy = results.FullMapping.WorkerIdToIndex.ToDictionary(kvp => kvp.Key, kvp => Rand.Double()); break; default: throw new ApplicationException("No worker selection method selected"); } // Create a list of tuples (TaskIds, WorkerId, ActiveLearningResult). List<Tuple<string, string, ActiveLearningResult>> LabelValue = new List<Tuple<string,string,ActiveLearningResult>>(); foreach (var kvp in TaskUtility) { foreach (var workerId in remainingWorkersPerTask[kvp.Key]) { var labelValue = new ActiveLearningResult { WorkerId = workerId, TaskId = kvp.Key, TaskValue = kvp.Value.TaskValue, WorkerValue = WorkerAccuracy[workerId] }; LabelValue.Add(Tuple.Create(labelValue.TaskId, labelValue.WorkerId, labelValue)); } } // Increment tha active set with new data nextData = GetNextData(groupedRandomisedData, LabelValue, currentCounts, totalCounts, remainingWorkersPerTask, numIncremData); if (nextData == null || nextData.Count == 0) break; index += nextData.Count; subData.AddRange(nextData); // Logs if (calculateAccuracy) { accuracy.Add(results.Accuracy); avgRecall.Add(results.AvgRecall); if (TaskUtility == null) { var sortedLabelValue = LabelValue.OrderByDescending(kvp => kvp.Item3.TaskValue).ToArray(); taskValueList.Add(sortedLabelValue.First().Item3); } else { //Adding WorkerId into taskValueList ActiveLearningResult nextTaskValueItem = TaskUtility[nextData.First().TaskId]; nextTaskValueItem.WorkerId = nextData.First().WorkerId; //add taskID nextTaskValueItem.TaskId = nextData.First().TaskId; taskValueList.Add(nextTaskValueItem); } if (doSnapShot) { Console.WriteLine("{0} (label {1} of {2}):\t{3:0.000}\t{4:0.0000}", modelName, index, totalInstances, accuracy.Last(), avgRecall.Last()); //DoSnapshot(accuracy, nlpd, avgRecall, taskValueList, results, modelName, "interim", resultsDir, initialNumLabelsPerTask); } }//end if logs }//end for all data isExperimentCompleted = true; stopWatchTotal.Stop(); DoSnapshot(accuracy, avgRecall, taskValueList, results, modelName, "final", resultsDir, initialNumLabelsPerTask); ResetAccuracyList(); Console.WriteLine("Elapsed time: {0}\n", stopWatchTotal.Elapsed); }
/// <summary> /// Run the BCC models /// </summary> /// <param name="modelName"></param> /// <param name="data"></param> /// <param name="fullData"></param> /// <param name="model"></param> /// <param name="mode"></param> /// <param name="calculateAccuracy"></param> /// <param name="numCommunities"></param> /// <param name="serialize"></param> /// <param name="serializeCommunityPosteriors"></param> public void RunBCC(string modelName, IList<Datum> data, IList<Datum> fullData, BCC model, RunMode mode, bool calculateAccuracy, int numCommunities = -1, bool serialize = false, bool serializeCommunityPosteriors = false) { CBCC communityModel = model as CBCC; IsCommunityModel = communityModel != null; bool IsBCC = !(IsCommunityModel); if (this.Mapping == null) { this.Mapping = new DataMapping(fullData, numCommunities); this.FullMapping = Mapping; this.GoldLabels = this.Mapping.GetGoldLabelsPerTaskId(); } bool createModel = (Mapping.LabelCount != model.LabelCount) || (Mapping.TaskCount != model.TaskCount); if (IsCommunityModel) { //Console.WriteLine("--- CBCC ---"); CommunityCount = numCommunities; createModel = createModel || (numCommunities != communityModel.CommunityCount); if (createModel) { communityModel.CreateModel(Mapping.TaskCount, Mapping.LabelCount, numCommunities); } } else if (createModel) { model.CreateModel(Mapping.TaskCount, Mapping.LabelCount); } BCCPosteriors priors = null; switch (mode) { case RunMode.Prediction: priors = ToPriors(); break; default: ClearResults(); if (mode == RunMode.LoadAndUseCommunityPriors && IsCommunityModel) { priors = DeserializeCommunityPosteriors(modelName, numCommunities); } break; } // Get data structures int[][] taskIndices = Mapping.GetTaskIndicesPerWorkerIndex(data); int[][] workerLabels = Mapping.GetLabelsPerWorkerIndex(data); if (mode == RunMode.Prediction) { // Signal prediction mode by setting all labels to null workerLabels = workerLabels.Select(arr => (int[])null).ToArray(); } // Call inference BCCPosteriors posteriors = model.Infer( taskIndices, workerLabels, priors); UpdateResults(posteriors, mode); if (calculateAccuracy) { UpdateAccuracy(); } if (serialize) { using (FileStream stream = new FileStream(modelName + ".xml", FileMode.Create)) { var serializer = new System.Xml.Serialization.XmlSerializer(IsCommunityModel ? typeof(CBCCPosteriors) : typeof(BCCPosteriors)); serializer.Serialize(stream, posteriors); } } if (serializeCommunityPosteriors && IsCommunityModel) { SerializeCommunityPosteriors(modelName); } }
}//end function RunParallelActiveLearning /// <summary> /// RunBatchRunning experiment in background thread /// </summary> /// <param name="worker"></param> /// <param name="e"></param> public void RunBatchRunningExperiment( System.ComponentModel.BackgroundWorker worker, System.ComponentModel.DoWorkEventArgs e) { CurrentParallelState currentState; //Get the number of the total experiment Items int totalNumberOfModels = GetNumberOfExperiemntModels(); //A List of Results array ofreport all experimentItems results = new List<Results>(); currentState = new CurrentParallelState(); //Running the current experimentSetting lists and runGold accordinglyb foreach (ExperimentModel currentExpItem in experimentModels) { //currentState.currentExperimentModel = currentExpItem; if (MainPage.mainPageForm.isExperimentComplete) { return; } currentState = new CurrentParallelState(); currentState.currentExperimentModelIndex = GetExperimenModelIndex(currentExpItem); currentState.isCurrentModelCompleted = false; //Pass the started currentIndex to the mainpage, such that this currentExpItem is started worker.ReportProgress(0, currentState); //Create a BCC/CBCC model of the Batch Running Experiment BCC currentModel = null; if( currentExpItem.runType == RunType.BCC) { currentModel = new BCC(); } else if(currentExpItem.runType == RunType.CBCC) { currentModel = new CBCC(); ((CBCC)currentModel).SetCommunityCount(MainPage.mainPageForm.currentExperimentSetting.communityCount); } //When the experiment is not running while (!MainPage.mainPageForm.isExperimentRunning ) { } if (MainPage.mainPageForm.isExperimentComplete) { return; } results.Add(CrowdsourcingModels.Program.RunBatchLearning(currentDataset.DatasetPath, currentExpItem.runType, currentModel, MainPage.mainPageForm.currentExperimentSetting.communityCount)); //When the experiment is not running while (!MainPage.mainPageForm.isExperimentRunning) { } if (MainPage.mainPageForm.isExperimentComplete) { return; } //add the results into the List<Results[]> //convert the lists into a single array of results (using LINQ) //notify the mainPage UI while it is completed currentState.isCurrentModelCompleted = true; worker.ReportProgress(0, currentState); } // For each experimentItem //The Batch Running is completed currentState.isRunningComplete = true; }
/// <summary> /// Background Thread for running the active learning experiment /// <param name="worker"></param> /// <param name="e"></param> public void RunParallelActiveLearning( System.ComponentModel.BackgroundWorker worker, System.ComponentModel.DoWorkEventArgs e) { //Create a state of the Thread CurrentParallelState currentState = new CurrentParallelState(); //Set setting in the experimentSetting Class int totalNumberOfModels = GetNumberOfExperiemntModels(); //Clear previous results ActiveLearning.ResetParallelAccuracyList(totalNumberOfModels); //obtain the accuracy list reference accuracyArrayOfAllExperimentModels = ActiveLearning.accuracyArray; //The RunTypes that have Worker Confusion Matrices RunType[] runTypesHaveWorkerMatrices = { RunType.DawidSkene, RunType.BCC, RunType.CBCC }; //Set the models selected in the setting pane string[] currentModelNames = new string[totalNumberOfModels]; RunType[] currentRunTypes = new RunType[totalNumberOfModels]; TaskSelectionMethod[] currentTaskSelectionMethods = new TaskSelectionMethod[totalNumberOfModels]; WorkerSelectionMethod[] currentWorkerSelectionMethods = new WorkerSelectionMethod[totalNumberOfModels]; BCC[] currentBCCModels = new BCC[totalNumberOfModels]; //for each ExperimentModel, set runTypeArray, taskSelectionMethodArray, workerSelectionMethodArray... for (int i = 0; i < totalNumberOfModels; i++) { ExperimentModel currentExperimentModel = GetExperimentModel(i); RunType currentRunType = currentExperimentModel.runType; currentRunTypes[i] = currentRunType; //set the task selection method currentTaskSelectionMethods[i] = currentExperimentModel.taskSelectionMethod; //Add into worker selection method array if the runType can have worker selection if (runTypesHaveWorkerMatrices.Contains(currentRunType)) { currentWorkerSelectionMethods[i] = currentExperimentModel.WorkerSelectionMethod; //Add corresponding model //if the RunType is BCC, add into BCC model array if (currentRunType == RunType.BCC) { currentBCCModels[i] = new BCC(); }//CBCC Model else if(currentRunType == RunType.CBCC) { CBCC currentBCCmodel = new CBCC(); currentBCCModels[i] = currentBCCmodel; } } //end if the runType has worker confusion matrices } //end for currentModelNames = currentModelNames.Select((s, i) => CrowdsourcingModels.Program.GetModelName(currentDataset.GetDataSetNameWithoutExtension(), currentRunTypes[i])).ToArray(); //run RunParallelActiveLearning in the ActiveLearning ActiveLearning.RunParallelActiveLearning(currentDataset.LoadData(), currentModelNames, currentRunTypes, currentBCCModels, currentTaskSelectionMethods, currentWorkerSelectionMethods, communityCount, numberOfLabellingRound); currentState.isRunningComplete = true; Debug.WriteLine("RunParallelActiveLearning Complete"); //isSimulationComplete = true; //worker.ReportProgress(0, currentState); }//end function RunParallelActiveLearning
/// <summary> /// Run the BCC models /// </summary> /// <param name="modelName"></param> /// <param name="data"></param> /// <param name="fullData"></param> /// <param name="model"></param> /// <param name="mode"></param> /// <param name="calculateAccuracy"></param> /// <param name="numCommunities"></param> /// <param name="serialize"></param> /// <param name="serializeCommunityPosteriors"></param> public void RunBCC(string modelName, IList <Datum> data, IList <Datum> fullData, BCC model, RunMode mode, bool calculateAccuracy, int numCommunities = -1, bool serialize = false, bool serializeCommunityPosteriors = false) { CBCC communityModel = model as CBCC; IsCommunityModel = communityModel != null; bool IsBCC = !(IsCommunityModel); if (this.Mapping == null) { this.Mapping = new DataMapping(fullData, numCommunities); this.FullMapping = Mapping; this.GoldLabels = this.Mapping.GetGoldLabelsPerTaskId(); } bool createModel = (Mapping.LabelCount != model.LabelCount) || (Mapping.TaskCount != model.TaskCount); if (IsCommunityModel) { //Console.WriteLine("--- CBCC ---"); CommunityCount = numCommunities; createModel = createModel || (numCommunities != communityModel.CommunityCount); if (createModel) { communityModel.CreateModel(Mapping.TaskCount, Mapping.LabelCount, numCommunities); } } else if (createModel) { model.CreateModel(Mapping.TaskCount, Mapping.LabelCount); } BCCPosteriors priors = null; switch (mode) { case RunMode.Prediction: priors = ToPriors(); break; default: ClearResults(); if (mode == RunMode.LoadAndUseCommunityPriors && IsCommunityModel) { priors = DeserializeCommunityPosteriors(modelName, numCommunities); } break; } // Get data structures int[][] taskIndices = Mapping.GetTaskIndicesPerWorkerIndex(data); int[][] workerLabels = Mapping.GetLabelsPerWorkerIndex(data); if (mode == RunMode.Prediction) { // Signal prediction mode by setting all labels to null workerLabels = workerLabels.Select(arr => (int[])null).ToArray(); } // Call inference BCCPosteriors posteriors = model.Infer( taskIndices, workerLabels, priors); UpdateResults(posteriors, mode); if (calculateAccuracy) { UpdateAccuracy(); } if (serialize) { using (FileStream stream = new FileStream(modelName + ".xml", FileMode.Create)) { var serializer = new System.Xml.Serialization.XmlSerializer(IsCommunityModel ? typeof(CBCCPosteriors) : typeof(BCCPosteriors)); serializer.Serialize(stream, posteriors); } } if (serializeCommunityPosteriors && IsCommunityModel) { SerializeCommunityPosteriors(modelName); } }
/// <summary> /// Run a batch learning experiment. /// </summary> /// <param name="dataSetPath">The path of the dataset.</param> /// <param name="runType">The run type.</param> /// <param name="model">The model.</param> /// <param name="numCommunities">The number of communities (only for CBCC)</param> /// <returns></returns> public static Results RunBatchLearning(string dataSetPath, RunType runType, BCC model, int numCommunities = 3) { var data = Datum.LoadData(dataSetPath); return RunGold(dataSetPath, data, runType, model, numCommunities); }
/// <summary> /// Run a batch learning experiment. /// </summary> /// <param name="dataSetPath">The path of the dataset.</param> /// <param name="runType">The run type.</param> /// <param name="model">The model.</param> /// <param name="numCommunities">The number of communities (only for CBCC)</param> /// <returns></returns> public static Results RunBatchLearning(string dataSetPath, RunType runType, BCC model, int numCommunities = 3) { var data = Datum.LoadData(dataSetPath); return(RunGold(dataSetPath, data, runType, model, numCommunities)); }
/// <summary> /// Runs a model with the full gold set. /// </summary> /// <param name="dataSet">The dataset name.</param> /// <param name="data">The data.</param> /// <param name="runType">The model run type.</param> /// <param name="model">The model instance.</param> /// <param name="numCommunities">The number of communities (only for CBCC).</param> /// <returns>The inference results</returns> public static Results RunGold(string dataSet, IList <Datum> data, RunType runType, BCC model, int numCommunities = 2) { string modelName = Program.GetModelName(dataSet, runType); Results results = new Results(); switch (runType) { case RunType.VoteDistribution: results.RunMajorityVote(data, data, true, true); break; case RunType.MajorityVote: results.RunMajorityVote(data, data, true, false); break; case RunType.DawidSkene: results.RunDawidSkene(data, data, true); break; default: results.RunBCC(modelName, data, data, model, RunMode.ClearResults, true, numCommunities, false, false); break; } return(results); }