public static void GetPointStates(out FixedArray2<PointState> state1, out FixedArray2<PointState> state2, ref Manifold manifold1, ref Manifold manifold2) { state1 = new FixedArray2<PointState>(); state2 = new FixedArray2<PointState>(); // Detect persists and removes. for (int i = 0; i < manifold1._pointCount; ++i) { ContactID id = manifold1._points[i].Id; state1[i] = PointState.Remove; for (int j = 0; j < manifold2._pointCount; ++j) { if (manifold2._points[j].Id.Key == id.Key) { state1[i] = PointState.Persist; break; } } } // Detect persists and adds. for (int i = 0; i < manifold2._pointCount; ++i) { ContactID id = manifold2._points[i].Id; state2[i] = PointState.Add; for (int j = 0; j < manifold1._pointCount; ++j) { if (manifold1._points[j].Id.Key == id.Key) { state2[i] = PointState.Persist; break; } } } }
/// Compute the collision manifold between a polygon and a circle. public static void CollidePolygonAndCircle(ref Manifold manifold, PolygonShape polygon, ref XForm xf1, CircleShape circle, ref XForm xf2) { manifold._pointCount = 0; // Compute circle position in the frame of the polygon. Vector2 c = MathUtils.Multiply(ref xf2, circle._p); Vector2 cLocal = MathUtils.MultiplyT(ref xf1, c); // Find the min separating edge. int normalIndex = 0; float separation = -Settings.b2_FLT_MAX; float radius = polygon._radius + circle._radius; int vertexCount = polygon._vertexCount; for (int i = 0; i < vertexCount; ++i) { float s = Vector2.Dot(polygon._normals[i], cLocal - polygon._vertices[i]); if (s > radius) { // Early out. return; } if (s > separation) { separation = s; normalIndex = i; } } // Vertices that subtend the incident face. int vertIndex1 = normalIndex; int vertIndex2 = vertIndex1 + 1 < vertexCount ? vertIndex1 + 1 : 0; Vector2 v1 = polygon._vertices[vertIndex1]; Vector2 v2 = polygon._vertices[vertIndex2]; // If the center is inside the polygon ... if (separation < Settings.b2_FLT_EPSILON) { manifold._pointCount = 1; manifold._type = ManifoldType.FaceA; manifold._localPlaneNormal = polygon._normals[normalIndex]; manifold._localPoint = 0.5f * (v1 + v2); var p0 = manifold._points[0]; p0.LocalPoint = circle._p; p0.Id.Key = 0; manifold._points[0] = p0; return; } // Compute barycentric coordinates float u1 = Vector2.Dot(cLocal - v1, v2 - v1); float u2 = Vector2.Dot(cLocal - v2, v1 - v2); if (u1 <= 0.0f) { if (Vector2.DistanceSquared(cLocal, v1) > radius * radius) { return; } manifold._pointCount = 1; manifold._type = ManifoldType.FaceA; manifold._localPlaneNormal = cLocal - v1; manifold._localPlaneNormal.Normalize(); manifold._localPoint = v1; var p0b = manifold._points[0]; p0b.LocalPoint = circle._p; p0b.Id.Key = 0; manifold._points[0] = p0b; } else if (u2 <= 0.0f) { if (Vector2.DistanceSquared(cLocal, v2) > radius * radius) { return; } manifold._pointCount = 1; manifold._type = ManifoldType.FaceA; manifold._localPlaneNormal = cLocal - v2; manifold._localPlaneNormal.Normalize(); manifold._localPoint = v2; var p0c = manifold._points[0]; p0c.LocalPoint = circle._p; p0c.Id.Key = 0; manifold._points[0] = p0c; } else { Vector2 faceCenter = 0.5f * (v1 + v2); float separation2 = Vector2.Dot(cLocal - faceCenter, polygon._normals[vertIndex1]); if (separation2 > radius) { return; } manifold._pointCount = 1; manifold._type = ManifoldType.FaceA; manifold._localPlaneNormal = polygon._normals[vertIndex1]; manifold._localPoint = faceCenter; var p0d = manifold._points[0]; p0d.LocalPoint = circle._p; p0d.Id.Key = 0; manifold._points[0] = p0d; } }
/// Compute the collision manifold between two polygons. public static void CollidePolygons(ref Manifold manifold, PolygonShape polyA, ref XForm xfA, PolygonShape polyB, ref XForm xfB) { manifold._pointCount = 0; float totalRadius = polyA._radius + polyB._radius; int edgeA = 0; float separationA = FindMaxSeparation(out edgeA, polyA, ref xfA, polyB, ref xfB); if (separationA > totalRadius) return; int edgeB = 0; float separationB = FindMaxSeparation(out edgeB, polyB, ref xfB, polyA, ref xfA); if (separationB > totalRadius) return; PolygonShape poly1; // reference polygon PolygonShape poly2; // incident polygon XForm xf1, xf2; int edge1; // reference edge byte flip; float k_relativeTol = 0.98f; float k_absoluteTol = 0.001f; if (separationB > k_relativeTol * separationA + k_absoluteTol) { poly1 = polyB; poly2 = polyA; xf1 = xfB; xf2 = xfA; edge1 = edgeB; manifold._type = ManifoldType.FaceB; flip = 1; } else { poly1 = polyA; poly2 = polyB; xf1 = xfA; xf2 = xfB; edge1 = edgeA; manifold._type = ManifoldType.FaceA; flip = 0; } FixedArray2<ClipVertex> incidentEdge; FindIncidentEdge(out incidentEdge, poly1, ref xf1, edge1, poly2, ref xf2); int count1 = poly1._vertexCount; Vector2 v11 = poly1._vertices[edge1]; Vector2 v12 = edge1 + 1 < count1 ? poly1._vertices[edge1+1] : poly1._vertices[0]; Vector2 dv = v12 - v11; Vector2 localNormal = MathUtils.Cross(dv, 1.0f); localNormal.Normalize(); Vector2 planePoint = 0.5f * (v11 + v12); Vector2 sideNormal = MathUtils.Multiply(ref xf1.R, v12 - v11); sideNormal.Normalize(); Vector2 frontNormal = MathUtils.Cross(sideNormal, 1.0f); v11 = MathUtils.Multiply(ref xf1, v11); v12 = MathUtils.Multiply(ref xf1, v12); float frontOffset = Vector2.Dot(frontNormal, v11); float sideOffset1 = -Vector2.Dot(sideNormal, v11); float sideOffset2 = Vector2.Dot(sideNormal, v12); // Clip incident edge against extruded edge1 side edges. FixedArray2<ClipVertex> clipPoints1; FixedArray2<ClipVertex> clipPoints2; int np; // Clip to box side 1 np = ClipSegmentToLine(out clipPoints1, ref incidentEdge, -sideNormal, sideOffset1); if (np < 2) return; // Clip to negative box side 1 np = ClipSegmentToLine(out clipPoints2, ref clipPoints1, sideNormal, sideOffset2); if (np < 2) { return; } // Now clipPoints2 contains the clipped points. manifold._localPlaneNormal = localNormal; manifold._localPoint = planePoint; int pointCount = 0; for (int i = 0; i < Settings.b2_maxManifoldPoints; ++i) { float separation = Vector2.Dot(frontNormal, clipPoints2[i].v) - frontOffset; if (separation <= totalRadius) { ManifoldPoint cp = manifold._points[pointCount]; cp.LocalPoint = MathUtils.MultiplyT(ref xf2, clipPoints2[i].v); cp.Id = clipPoints2[i].id; cp.Id.Features.Flip = flip; manifold._points[pointCount] = cp; ++pointCount; } } manifold._pointCount = pointCount; }
/// Compute the collision manifold between two circles. public static void CollideCircles(ref Manifold manifold, CircleShape circle1, ref XForm xf1, CircleShape circle2, ref XForm xf2) { manifold._pointCount = 0; Vector2 p1 = MathUtils.Multiply(ref xf1, circle1._p); Vector2 p2 = MathUtils.Multiply(ref xf2, circle2._p); Vector2 d = p2 - p1; float distSqr = Vector2.Dot(d, d); float radius = circle1._radius + circle2._radius; if (distSqr > radius * radius) { return; } manifold._type = ManifoldType.Circles; manifold._localPoint = circle1._p; manifold._localPlaneNormal = Vector2.Zero; manifold._pointCount = 1; var p0 = manifold._points[0]; p0.LocalPoint = circle2._p; p0.Id.Key = 0; manifold._points[0] = p0; }
public FixedArray2<Vector2> _points; ///< world contact point (point of intersection) #endregion Fields #region Constructors /// Evaluate the manifold with supplied transforms. This assumes /// modest motion from the original state. This does not change the /// point count, impulses, etc. The radii must come from the shapes /// that generated the manifold. public WorldManifold(ref Manifold manifold, ref XForm xfA, float radiusA, ref XForm xfB, float radiusB) { _normal = Vector2.Zero; _points = new FixedArray2<Vector2>(); if (manifold._pointCount == 0) { return; } switch (manifold._type) { case ManifoldType.Circles: { Vector2 pointA = MathUtils.Multiply(ref xfA, manifold._localPoint); Vector2 pointB = MathUtils.Multiply(ref xfB, manifold._points[0].LocalPoint); Vector2 normal = new Vector2(1.0f, 0.0f); if (Vector2.DistanceSquared(pointA, pointB) > Settings.b2_FLT_EPSILON * Settings.b2_FLT_EPSILON) { normal = pointB - pointA; normal.Normalize(); } _normal = normal; Vector2 cA = pointA + radiusA * normal; Vector2 cB = pointB - radiusB * normal; _points[0] = 0.5f * (cA + cB); } break; case ManifoldType.FaceA: { Vector2 normal = MathUtils.Multiply(ref xfA.R, manifold._localPlaneNormal); Vector2 planePoint = MathUtils.Multiply(ref xfA, manifold._localPoint); // Ensure normal points from A to B. _normal = normal; for (int i = 0; i < manifold._pointCount; ++i) { Vector2 clipPoint = MathUtils.Multiply(ref xfB, manifold._points[i].LocalPoint); Vector2 cA = clipPoint + (radiusA - Vector2.Dot(clipPoint - planePoint, normal)) * normal; Vector2 cB = clipPoint - radiusB * normal; _points[i] = 0.5f * (cA + cB); } } break; case ManifoldType.FaceB: { Vector2 normal = MathUtils.Multiply(ref xfB.R, manifold._localPlaneNormal); Vector2 planePoint = MathUtils.Multiply(ref xfB, manifold._localPoint); // Ensure normal points from A to B. _normal = -normal; for (int i = 0; i < manifold._pointCount; ++i) { Vector2 clipPoint = MathUtils.Multiply(ref xfA, manifold._points[i].LocalPoint); Vector2 cA = clipPoint - radiusA * normal; Vector2 cB = clipPoint + (radiusB - Vector2.Dot(clipPoint - planePoint, normal)) * normal; _points[i] = 0.5f * (cA + cB); } } break; } }
/// Compute the collision manifold between two polygons. public static void CollidePolygons(ref Manifold manifold, PolygonShape polyA, ref XForm xfA, PolygonShape polyB, ref XForm xfB) { manifold._pointCount = 0; float totalRadius = polyA._radius + polyB._radius; int edgeA = 0; float separationA = FindMaxSeparation(out edgeA, polyA, ref xfA, polyB, ref xfB); if (separationA > totalRadius) { return; } int edgeB = 0; float separationB = FindMaxSeparation(out edgeB, polyB, ref xfB, polyA, ref xfA); if (separationB > totalRadius) { return; } PolygonShape poly1; // reference polygon PolygonShape poly2; // incident polygon XForm xf1, xf2; int edge1; // reference edge byte flip; float k_relativeTol = 0.98f; float k_absoluteTol = 0.001f; if (separationB > k_relativeTol * separationA + k_absoluteTol) { poly1 = polyB; poly2 = polyA; xf1 = xfB; xf2 = xfA; edge1 = edgeB; manifold._type = ManifoldType.FaceB; flip = 1; } else { poly1 = polyA; poly2 = polyB; xf1 = xfA; xf2 = xfB; edge1 = edgeA; manifold._type = ManifoldType.FaceA; flip = 0; } FixedArray2 <ClipVertex> incidentEdge; FindIncidentEdge(out incidentEdge, poly1, ref xf1, edge1, poly2, ref xf2); int count1 = poly1._vertexCount; Vector2 v11 = poly1._vertices[edge1]; Vector2 v12 = edge1 + 1 < count1 ? poly1._vertices[edge1 + 1] : poly1._vertices[0]; Vector2 dv = v12 - v11; Vector2 localNormal = MathUtils.Cross(dv, 1.0f); localNormal.Normalize(); Vector2 planePoint = 0.5f * (v11 + v12); Vector2 sideNormal = MathUtils.Multiply(ref xf1.R, v12 - v11); sideNormal.Normalize(); Vector2 frontNormal = MathUtils.Cross(sideNormal, 1.0f); v11 = MathUtils.Multiply(ref xf1, v11); v12 = MathUtils.Multiply(ref xf1, v12); float frontOffset = Vector2.Dot(frontNormal, v11); float sideOffset1 = -Vector2.Dot(sideNormal, v11); float sideOffset2 = Vector2.Dot(sideNormal, v12); // Clip incident edge against extruded edge1 side edges. FixedArray2 <ClipVertex> clipPoints1; FixedArray2 <ClipVertex> clipPoints2; int np; // Clip to box side 1 np = ClipSegmentToLine(out clipPoints1, ref incidentEdge, -sideNormal, sideOffset1); if (np < 2) { return; } // Clip to negative box side 1 np = ClipSegmentToLine(out clipPoints2, ref clipPoints1, sideNormal, sideOffset2); if (np < 2) { return; } // Now clipPoints2 contains the clipped points. manifold._localPlaneNormal = localNormal; manifold._localPoint = planePoint; int pointCount = 0; for (int i = 0; i < Settings.b2_maxManifoldPoints; ++i) { float separation = Vector2.Dot(frontNormal, clipPoints2[i].v) - frontOffset; if (separation <= totalRadius) { ManifoldPoint cp = manifold._points[pointCount]; cp.LocalPoint = MathUtils.MultiplyT(ref xf2, clipPoints2[i].v); cp.Id = clipPoints2[i].id; cp.Id.Features.Flip = flip; manifold._points[pointCount] = cp; ++pointCount; } } manifold._pointCount = pointCount; }
/// Evaluate the manifold with supplied transforms. This assumes /// modest motion from the original state. This does not change the /// point count, impulses, etc. The radii must come from the shapes /// that generated the manifold. public WorldManifold(ref Manifold manifold, ref XForm xfA, float radiusA, ref XForm xfB, float radiusB) { _normal = Vector2.Zero; _points = new FixedArray2 <Vector2>(); if (manifold._pointCount == 0) { return; } switch (manifold._type) { case ManifoldType.Circles: { Vector2 pointA = MathUtils.Multiply(ref xfA, manifold._localPoint); Vector2 pointB = MathUtils.Multiply(ref xfB, manifold._points[0].LocalPoint); Vector2 normal = new Vector2(1.0f, 0.0f); if (Vector2.DistanceSquared(pointA, pointB) > Settings.b2_FLT_EPSILON * Settings.b2_FLT_EPSILON) { normal = pointB - pointA; normal.Normalize(); } _normal = normal; Vector2 cA = pointA + radiusA * normal; Vector2 cB = pointB - radiusB * normal; _points[0] = 0.5f * (cA + cB); } break; case ManifoldType.FaceA: { Vector2 normal = MathUtils.Multiply(ref xfA.R, manifold._localPlaneNormal); Vector2 planePoint = MathUtils.Multiply(ref xfA, manifold._localPoint); // Ensure normal points from A to B. _normal = normal; for (int i = 0; i < manifold._pointCount; ++i) { Vector2 clipPoint = MathUtils.Multiply(ref xfB, manifold._points[i].LocalPoint); Vector2 cA = clipPoint + (radiusA - Vector2.Dot(clipPoint - planePoint, normal)) * normal; Vector2 cB = clipPoint - radiusB * normal; _points[i] = 0.5f * (cA + cB); } } break; case ManifoldType.FaceB: { Vector2 normal = MathUtils.Multiply(ref xfB.R, manifold._localPlaneNormal); Vector2 planePoint = MathUtils.Multiply(ref xfB, manifold._localPoint); // Ensure normal points from A to B. _normal = -normal; for (int i = 0; i < manifold._pointCount; ++i) { Vector2 clipPoint = MathUtils.Multiply(ref xfA, manifold._points[i].LocalPoint); Vector2 cA = clipPoint - radiusA * normal; Vector2 cB = clipPoint + (radiusB - Vector2.Dot(clipPoint - planePoint, normal)) * normal; _points[i] = 0.5f * (cA + cB); } } break; } }