Ejemplo n.º 1
0
        public static void GetPointStates(out FixedArray2<PointState> state1, out FixedArray2<PointState> state2,
					          ref Manifold manifold1, ref Manifold manifold2)
        {
            state1 = new FixedArray2<PointState>();
            state2 = new FixedArray2<PointState>();

            // Detect persists and removes.
            for (int i = 0; i < manifold1._pointCount; ++i)
            {
                ContactID id = manifold1._points[i].Id;

                state1[i] = PointState.Remove;

                for (int j = 0; j < manifold2._pointCount; ++j)
                {
                    if (manifold2._points[j].Id.Key == id.Key)
                    {
                        state1[i] = PointState.Persist;
                        break;
                    }
                }
            }

            // Detect persists and adds.
            for (int i = 0; i < manifold2._pointCount; ++i)
            {
                ContactID id = manifold2._points[i].Id;

                state2[i] = PointState.Add;

                for (int j = 0; j < manifold1._pointCount; ++j)
                {
                    if (manifold1._points[j].Id.Key == id.Key)
                    {
                        state2[i] = PointState.Persist;
                        break;
                    }
                }
            }
        }
Ejemplo n.º 2
0
        /// Compute the collision manifold between a polygon and a circle.
        public static void CollidePolygonAndCircle(ref Manifold manifold,
							           PolygonShape polygon, ref XForm xf1,
							           CircleShape circle, ref XForm xf2)
        {
            manifold._pointCount = 0;

            // Compute circle position in the frame of the polygon.
            Vector2 c = MathUtils.Multiply(ref xf2, circle._p);
            Vector2 cLocal = MathUtils.MultiplyT(ref xf1, c);

            // Find the min separating edge.
            int normalIndex = 0;
            float separation = -Settings.b2_FLT_MAX;
            float radius = polygon._radius + circle._radius;
            int vertexCount = polygon._vertexCount;

            for (int i = 0; i < vertexCount; ++i)
            {
                float s = Vector2.Dot(polygon._normals[i], cLocal - polygon._vertices[i]);

                if (s > radius)
                {
                    // Early out.
                    return;
                }

                if (s > separation)
                {
                    separation = s;
                    normalIndex = i;
                }
            }

            // Vertices that subtend the incident face.
            int vertIndex1 = normalIndex;
            int vertIndex2 = vertIndex1 + 1 < vertexCount ? vertIndex1 + 1 : 0;
            Vector2 v1 = polygon._vertices[vertIndex1];
            Vector2 v2 = polygon._vertices[vertIndex2];

            // If the center is inside the polygon ...
            if (separation < Settings.b2_FLT_EPSILON)
            {
                manifold._pointCount = 1;
                manifold._type = ManifoldType.FaceA;
                manifold._localPlaneNormal = polygon._normals[normalIndex];
                manifold._localPoint = 0.5f * (v1 + v2);

                var p0 = manifold._points[0];

                p0.LocalPoint = circle._p;
                p0.Id.Key = 0;

                manifold._points[0] = p0;

                return;
            }

            // Compute barycentric coordinates
            float u1 = Vector2.Dot(cLocal - v1, v2 - v1);
            float u2 = Vector2.Dot(cLocal - v2, v1 - v2);
            if (u1 <= 0.0f)
            {
                if (Vector2.DistanceSquared(cLocal, v1) > radius * radius)
                {
                    return;
                }

                manifold._pointCount = 1;
                manifold._type = ManifoldType.FaceA;
                manifold._localPlaneNormal = cLocal - v1;
                manifold._localPlaneNormal.Normalize();
                manifold._localPoint = v1;

                var p0b = manifold._points[0];

                p0b.LocalPoint = circle._p;
                p0b.Id.Key = 0;

                manifold._points[0] = p0b;

            }
            else if (u2 <= 0.0f)
            {
                if (Vector2.DistanceSquared(cLocal, v2) > radius * radius)
                {
                    return;
                }

                manifold._pointCount = 1;
                manifold._type = ManifoldType.FaceA;
                manifold._localPlaneNormal = cLocal - v2;
                manifold._localPlaneNormal.Normalize();
                manifold._localPoint = v2;

                var p0c = manifold._points[0];

                p0c.LocalPoint = circle._p;
                p0c.Id.Key = 0;

                manifold._points[0] = p0c;
            }
            else
            {
                Vector2 faceCenter = 0.5f * (v1 + v2);
                float separation2 = Vector2.Dot(cLocal - faceCenter, polygon._normals[vertIndex1]);
                if (separation2 > radius)
                {
                    return;
                }

                manifold._pointCount = 1;
                manifold._type = ManifoldType.FaceA;
                manifold._localPlaneNormal = polygon._normals[vertIndex1];
                manifold._localPoint = faceCenter;

                var p0d = manifold._points[0];

                p0d.LocalPoint = circle._p;
                p0d.Id.Key = 0;

                manifold._points[0] = p0d;
            }
        }
Ejemplo n.º 3
0
        /// Compute the collision manifold between two polygons.
        public static void CollidePolygons(ref Manifold manifold,
                               PolygonShape polyA, ref XForm xfA,
                               PolygonShape polyB, ref XForm xfB)
        {
            manifold._pointCount = 0;
            float totalRadius = polyA._radius + polyB._radius;

            int edgeA = 0;
            float separationA = FindMaxSeparation(out edgeA, polyA, ref xfA, polyB, ref xfB);
            if (separationA > totalRadius)
                return;

            int edgeB = 0;
            float separationB = FindMaxSeparation(out edgeB, polyB, ref xfB, polyA, ref xfA);
            if (separationB > totalRadius)
                return;

            PolygonShape poly1;	// reference polygon
            PolygonShape poly2;	// incident polygon
            XForm xf1, xf2;
            int edge1;		// reference edge
            byte flip;
            float k_relativeTol = 0.98f;
            float k_absoluteTol = 0.001f;

            if (separationB > k_relativeTol * separationA + k_absoluteTol)
            {
                poly1 = polyB;
                poly2 = polyA;
                xf1 = xfB;
                xf2 = xfA;
                edge1 = edgeB;
                manifold._type = ManifoldType.FaceB;
                flip = 1;
            }
            else
            {
                poly1 = polyA;
                poly2 = polyB;
                xf1 = xfA;
                xf2 = xfB;
                edge1 = edgeA;
                manifold._type = ManifoldType.FaceA;
                flip = 0;
            }

            FixedArray2<ClipVertex> incidentEdge;
            FindIncidentEdge(out incidentEdge, poly1, ref xf1, edge1, poly2, ref xf2);

            int count1 = poly1._vertexCount;

            Vector2 v11 = poly1._vertices[edge1];
            Vector2 v12 = edge1 + 1 < count1 ? poly1._vertices[edge1+1] : poly1._vertices[0];

            Vector2 dv = v12 - v11;

            Vector2 localNormal = MathUtils.Cross(dv, 1.0f);
            localNormal.Normalize();
            Vector2 planePoint = 0.5f * (v11 + v12);

            Vector2 sideNormal = MathUtils.Multiply(ref xf1.R, v12 - v11);
            sideNormal.Normalize();
            Vector2 frontNormal = MathUtils.Cross(sideNormal, 1.0f);

            v11 = MathUtils.Multiply(ref xf1, v11);
            v12 = MathUtils.Multiply(ref xf1, v12);

            float frontOffset = Vector2.Dot(frontNormal, v11);
            float sideOffset1 = -Vector2.Dot(sideNormal, v11);
            float sideOffset2 = Vector2.Dot(sideNormal, v12);

            // Clip incident edge against extruded edge1 side edges.
            FixedArray2<ClipVertex> clipPoints1;
            FixedArray2<ClipVertex> clipPoints2;
            int np;

            // Clip to box side 1
            np = ClipSegmentToLine(out clipPoints1, ref incidentEdge, -sideNormal, sideOffset1);

            if (np < 2)
                return;

            // Clip to negative box side 1
            np = ClipSegmentToLine(out clipPoints2, ref clipPoints1, sideNormal, sideOffset2);

            if (np < 2)
            {
                return;
            }

            // Now clipPoints2 contains the clipped points.
            manifold._localPlaneNormal = localNormal;
            manifold._localPoint = planePoint;

            int pointCount = 0;
            for (int i = 0; i < Settings.b2_maxManifoldPoints; ++i)
            {
                float separation = Vector2.Dot(frontNormal, clipPoints2[i].v) - frontOffset;

                if (separation <= totalRadius)
                {
                    ManifoldPoint cp = manifold._points[pointCount];
                    cp.LocalPoint = MathUtils.MultiplyT(ref xf2, clipPoints2[i].v);
                    cp.Id = clipPoints2[i].id;
                    cp.Id.Features.Flip = flip;
                    manifold._points[pointCount] = cp;

                    ++pointCount;
                }
            }

            manifold._pointCount = pointCount;
        }
Ejemplo n.º 4
0
        /// Compute the collision manifold between two circles.
        public static void CollideCircles(ref Manifold manifold,
					          CircleShape circle1, ref XForm xf1,
					          CircleShape circle2, ref XForm xf2)
        {
            manifold._pointCount = 0;

            Vector2 p1 = MathUtils.Multiply(ref xf1, circle1._p);
            Vector2 p2 = MathUtils.Multiply(ref xf2, circle2._p);

            Vector2 d = p2 - p1;
            float distSqr = Vector2.Dot(d, d);
            float radius = circle1._radius + circle2._radius;
            if (distSqr > radius * radius)
            {
                return;
            }

            manifold._type = ManifoldType.Circles;
            manifold._localPoint = circle1._p;
            manifold._localPlaneNormal = Vector2.Zero;
            manifold._pointCount = 1;

            var p0 = manifold._points[0];

            p0.LocalPoint = circle2._p;
            p0.Id.Key = 0;

            manifold._points[0] = p0;
        }
Ejemplo n.º 5
0
        public FixedArray2<Vector2> _points; ///< world contact point (point of intersection)

        #endregion Fields

        #region Constructors

        /// Evaluate the manifold with supplied transforms. This assumes
        /// modest motion from the original state. This does not change the
        /// point count, impulses, etc. The radii must come from the shapes
        /// that generated the manifold.
        public WorldManifold(ref Manifold manifold,
					    ref XForm xfA, float radiusA,
					    ref XForm xfB, float radiusB)
        {
            _normal = Vector2.Zero;
            _points = new FixedArray2<Vector2>();

            if (manifold._pointCount == 0)
            {
                return;
            }

            switch (manifold._type)
            {
            case ManifoldType.Circles:
                {
                    Vector2 pointA = MathUtils.Multiply(ref xfA, manifold._localPoint);
                    Vector2 pointB = MathUtils.Multiply(ref xfB, manifold._points[0].LocalPoint);
                    Vector2 normal = new Vector2(1.0f, 0.0f);
                    if (Vector2.DistanceSquared(pointA, pointB) > Settings.b2_FLT_EPSILON * Settings.b2_FLT_EPSILON)
                    {
                        normal = pointB - pointA;
                        normal.Normalize();
                    }

                    _normal = normal;

                    Vector2 cA = pointA + radiusA * normal;
                    Vector2 cB = pointB - radiusB * normal;
                    _points[0] = 0.5f * (cA + cB);
                }
                break;

            case ManifoldType.FaceA:
                {
                    Vector2 normal = MathUtils.Multiply(ref xfA.R, manifold._localPlaneNormal);
                    Vector2 planePoint = MathUtils.Multiply(ref xfA, manifold._localPoint);

                    // Ensure normal points from A to B.
                    _normal = normal;

                    for (int i = 0; i < manifold._pointCount; ++i)
                    {
                        Vector2 clipPoint = MathUtils.Multiply(ref xfB, manifold._points[i].LocalPoint);
                        Vector2 cA = clipPoint + (radiusA - Vector2.Dot(clipPoint - planePoint, normal)) * normal;
                        Vector2 cB = clipPoint - radiusB * normal;
                        _points[i] = 0.5f * (cA + cB);
                    }
                }
                break;

            case ManifoldType.FaceB:
                {
                    Vector2 normal = MathUtils.Multiply(ref xfB.R, manifold._localPlaneNormal);
                    Vector2 planePoint = MathUtils.Multiply(ref xfB, manifold._localPoint);

                    // Ensure normal points from A to B.
                    _normal = -normal;

                    for (int i = 0; i < manifold._pointCount; ++i)
                    {
                        Vector2 clipPoint = MathUtils.Multiply(ref xfA, manifold._points[i].LocalPoint);
                        Vector2 cA = clipPoint - radiusA * normal;
                        Vector2 cB = clipPoint + (radiusB - Vector2.Dot(clipPoint - planePoint, normal)) * normal;
                        _points[i] = 0.5f * (cA + cB);
                    }
                }
                break;
            }
        }
Ejemplo n.º 6
0
        /// Compute the collision manifold between two polygons.
        public static void CollidePolygons(ref Manifold manifold,
                                           PolygonShape polyA, ref XForm xfA,
                                           PolygonShape polyB, ref XForm xfB)
        {
            manifold._pointCount = 0;
            float totalRadius = polyA._radius + polyB._radius;

            int   edgeA       = 0;
            float separationA = FindMaxSeparation(out edgeA, polyA, ref xfA, polyB, ref xfB);

            if (separationA > totalRadius)
            {
                return;
            }

            int   edgeB       = 0;
            float separationB = FindMaxSeparation(out edgeB, polyB, ref xfB, polyA, ref xfA);

            if (separationB > totalRadius)
            {
                return;
            }

            PolygonShape poly1;         // reference polygon
            PolygonShape poly2;         // incident polygon
            XForm        xf1, xf2;
            int          edge1;         // reference edge
            byte         flip;
            float        k_relativeTol = 0.98f;
            float        k_absoluteTol = 0.001f;

            if (separationB > k_relativeTol * separationA + k_absoluteTol)
            {
                poly1          = polyB;
                poly2          = polyA;
                xf1            = xfB;
                xf2            = xfA;
                edge1          = edgeB;
                manifold._type = ManifoldType.FaceB;
                flip           = 1;
            }
            else
            {
                poly1          = polyA;
                poly2          = polyB;
                xf1            = xfA;
                xf2            = xfB;
                edge1          = edgeA;
                manifold._type = ManifoldType.FaceA;
                flip           = 0;
            }

            FixedArray2 <ClipVertex> incidentEdge;

            FindIncidentEdge(out incidentEdge, poly1, ref xf1, edge1, poly2, ref xf2);

            int count1 = poly1._vertexCount;

            Vector2 v11 = poly1._vertices[edge1];
            Vector2 v12 = edge1 + 1 < count1 ? poly1._vertices[edge1 + 1] : poly1._vertices[0];

            Vector2 dv = v12 - v11;

            Vector2 localNormal = MathUtils.Cross(dv, 1.0f);

            localNormal.Normalize();
            Vector2 planePoint = 0.5f * (v11 + v12);

            Vector2 sideNormal = MathUtils.Multiply(ref xf1.R, v12 - v11);

            sideNormal.Normalize();
            Vector2 frontNormal = MathUtils.Cross(sideNormal, 1.0f);

            v11 = MathUtils.Multiply(ref xf1, v11);
            v12 = MathUtils.Multiply(ref xf1, v12);

            float frontOffset = Vector2.Dot(frontNormal, v11);
            float sideOffset1 = -Vector2.Dot(sideNormal, v11);
            float sideOffset2 = Vector2.Dot(sideNormal, v12);

            // Clip incident edge against extruded edge1 side edges.
            FixedArray2 <ClipVertex> clipPoints1;
            FixedArray2 <ClipVertex> clipPoints2;
            int np;

            // Clip to box side 1
            np = ClipSegmentToLine(out clipPoints1, ref incidentEdge, -sideNormal, sideOffset1);

            if (np < 2)
            {
                return;
            }

            // Clip to negative box side 1
            np = ClipSegmentToLine(out clipPoints2, ref clipPoints1, sideNormal, sideOffset2);

            if (np < 2)
            {
                return;
            }

            // Now clipPoints2 contains the clipped points.
            manifold._localPlaneNormal = localNormal;
            manifold._localPoint       = planePoint;

            int pointCount = 0;

            for (int i = 0; i < Settings.b2_maxManifoldPoints; ++i)
            {
                float separation = Vector2.Dot(frontNormal, clipPoints2[i].v) - frontOffset;

                if (separation <= totalRadius)
                {
                    ManifoldPoint cp = manifold._points[pointCount];
                    cp.LocalPoint                = MathUtils.MultiplyT(ref xf2, clipPoints2[i].v);
                    cp.Id                        = clipPoints2[i].id;
                    cp.Id.Features.Flip          = flip;
                    manifold._points[pointCount] = cp;

                    ++pointCount;
                }
            }

            manifold._pointCount = pointCount;
        }
Ejemplo n.º 7
0
        /// Compute the collision manifold between a polygon and a circle.
        public static void CollidePolygonAndCircle(ref Manifold manifold,
                                                   PolygonShape polygon, ref XForm xf1,
                                                   CircleShape circle, ref XForm xf2)
        {
            manifold._pointCount = 0;

            // Compute circle position in the frame of the polygon.
            Vector2 c      = MathUtils.Multiply(ref xf2, circle._p);
            Vector2 cLocal = MathUtils.MultiplyT(ref xf1, c);

            // Find the min separating edge.
            int   normalIndex = 0;
            float separation  = -Settings.b2_FLT_MAX;
            float radius      = polygon._radius + circle._radius;
            int   vertexCount = polygon._vertexCount;

            for (int i = 0; i < vertexCount; ++i)
            {
                float s = Vector2.Dot(polygon._normals[i], cLocal - polygon._vertices[i]);

                if (s > radius)
                {
                    // Early out.
                    return;
                }

                if (s > separation)
                {
                    separation  = s;
                    normalIndex = i;
                }
            }

            // Vertices that subtend the incident face.
            int     vertIndex1 = normalIndex;
            int     vertIndex2 = vertIndex1 + 1 < vertexCount ? vertIndex1 + 1 : 0;
            Vector2 v1         = polygon._vertices[vertIndex1];
            Vector2 v2         = polygon._vertices[vertIndex2];

            // If the center is inside the polygon ...
            if (separation < Settings.b2_FLT_EPSILON)
            {
                manifold._pointCount       = 1;
                manifold._type             = ManifoldType.FaceA;
                manifold._localPlaneNormal = polygon._normals[normalIndex];
                manifold._localPoint       = 0.5f * (v1 + v2);

                var p0 = manifold._points[0];

                p0.LocalPoint = circle._p;
                p0.Id.Key     = 0;

                manifold._points[0] = p0;

                return;
            }

            // Compute barycentric coordinates
            float u1 = Vector2.Dot(cLocal - v1, v2 - v1);
            float u2 = Vector2.Dot(cLocal - v2, v1 - v2);

            if (u1 <= 0.0f)
            {
                if (Vector2.DistanceSquared(cLocal, v1) > radius * radius)
                {
                    return;
                }

                manifold._pointCount       = 1;
                manifold._type             = ManifoldType.FaceA;
                manifold._localPlaneNormal = cLocal - v1;
                manifold._localPlaneNormal.Normalize();
                manifold._localPoint = v1;

                var p0b = manifold._points[0];

                p0b.LocalPoint = circle._p;
                p0b.Id.Key     = 0;

                manifold._points[0] = p0b;
            }
            else if (u2 <= 0.0f)
            {
                if (Vector2.DistanceSquared(cLocal, v2) > radius * radius)
                {
                    return;
                }

                manifold._pointCount       = 1;
                manifold._type             = ManifoldType.FaceA;
                manifold._localPlaneNormal = cLocal - v2;
                manifold._localPlaneNormal.Normalize();
                manifold._localPoint = v2;

                var p0c = manifold._points[0];

                p0c.LocalPoint = circle._p;
                p0c.Id.Key     = 0;

                manifold._points[0] = p0c;
            }
            else
            {
                Vector2 faceCenter  = 0.5f * (v1 + v2);
                float   separation2 = Vector2.Dot(cLocal - faceCenter, polygon._normals[vertIndex1]);
                if (separation2 > radius)
                {
                    return;
                }

                manifold._pointCount       = 1;
                manifold._type             = ManifoldType.FaceA;
                manifold._localPlaneNormal = polygon._normals[vertIndex1];
                manifold._localPoint       = faceCenter;

                var p0d = manifold._points[0];

                p0d.LocalPoint = circle._p;
                p0d.Id.Key     = 0;

                manifold._points[0] = p0d;
            }
        }
Ejemplo n.º 8
0
        /// Evaluate the manifold with supplied transforms. This assumes
        /// modest motion from the original state. This does not change the
        /// point count, impulses, etc. The radii must come from the shapes
        /// that generated the manifold.
        public WorldManifold(ref Manifold manifold,
                             ref XForm xfA, float radiusA,
                             ref XForm xfB, float radiusB)
        {
            _normal = Vector2.Zero;
            _points = new FixedArray2 <Vector2>();

            if (manifold._pointCount == 0)
            {
                return;
            }

            switch (manifold._type)
            {
            case ManifoldType.Circles:
            {
                Vector2 pointA = MathUtils.Multiply(ref xfA, manifold._localPoint);
                Vector2 pointB = MathUtils.Multiply(ref xfB, manifold._points[0].LocalPoint);
                Vector2 normal = new Vector2(1.0f, 0.0f);
                if (Vector2.DistanceSquared(pointA, pointB) > Settings.b2_FLT_EPSILON * Settings.b2_FLT_EPSILON)
                {
                    normal = pointB - pointA;
                    normal.Normalize();
                }

                _normal = normal;

                Vector2 cA = pointA + radiusA * normal;
                Vector2 cB = pointB - radiusB * normal;
                _points[0] = 0.5f * (cA + cB);
            }
            break;

            case ManifoldType.FaceA:
            {
                Vector2 normal     = MathUtils.Multiply(ref xfA.R, manifold._localPlaneNormal);
                Vector2 planePoint = MathUtils.Multiply(ref xfA, manifold._localPoint);

                // Ensure normal points from A to B.
                _normal = normal;

                for (int i = 0; i < manifold._pointCount; ++i)
                {
                    Vector2 clipPoint = MathUtils.Multiply(ref xfB, manifold._points[i].LocalPoint);
                    Vector2 cA        = clipPoint + (radiusA - Vector2.Dot(clipPoint - planePoint, normal)) * normal;
                    Vector2 cB        = clipPoint - radiusB * normal;
                    _points[i] = 0.5f * (cA + cB);
                }
            }
            break;

            case ManifoldType.FaceB:
            {
                Vector2 normal     = MathUtils.Multiply(ref xfB.R, manifold._localPlaneNormal);
                Vector2 planePoint = MathUtils.Multiply(ref xfB, manifold._localPoint);

                // Ensure normal points from A to B.
                _normal = -normal;

                for (int i = 0; i < manifold._pointCount; ++i)
                {
                    Vector2 clipPoint = MathUtils.Multiply(ref xfA, manifold._points[i].LocalPoint);
                    Vector2 cA        = clipPoint - radiusA * normal;
                    Vector2 cB        = clipPoint + (radiusB - Vector2.Dot(clipPoint - planePoint, normal)) * normal;
                    _points[i] = 0.5f * (cA + cB);
                }
            }
            break;
            }
        }