Exemple #1
0
        public void TimeSeriesCrossValidation_Validate_InitialTrainingSize_Is_Larger_Than_Obsevations_Length()
        {
            var(observations, targets) = DataSetUtilities.LoadDecisionTreeDataSet();

            var sut = new TimeSeriesCrossValidation <double>(initialTrainingSize: 300);

            var timeSeriesPredictions = sut.Validate(new RegressionDecisionTreeLearner(), observations, targets);
        }
Exemple #2
0
        public void TimeSeriesCrossValidation_Validate_Observations_And_Targets_Length_Does_Not_Match()
        {
            var(observations, targets) = DataSetUtilities.LoadDecisionTreeDataSet();
            targets = targets.Take(100).ToArray();

            var sut = new TimeSeriesCrossValidation <double>(initialTrainingSize: 5);

            var timeSeriesPredictions = sut.Validate(new RegressionDecisionTreeLearner(), observations, targets);
        }
        public void TimeSeriesCrossValidation_Validate_InitialTrainingSize_Is_Larger_Than_Obsevations_Length()
        {
            var targetName   = "T";
            var parser       = new CsvParser(() => new StringReader(Resources.DecisionTreeData));
            var observations = parser.EnumerateRows(v => !v.Contains(targetName)).ToF64Matrix();
            var targets      = parser.EnumerateRows(targetName).ToF64Vector();

            var sut = new TimeSeriesCrossValidation <double>(initialTrainingSize: 300);

            var timeSeriesPredictions = sut.Validate(new RegressionDecisionTreeLearner(), observations, targets);
        }
Exemple #4
0
        public void TimeSeriesCrossValidation_Validate_MaxTrainingSetSize_And_RetrainInterval()
        {
            var(observations, targets) = DataSetUtilities.LoadDecisionTreeDataSet();

            var sut = new TimeSeriesCrossValidation <double>(initialTrainingSize: 5, maxTrainingSetSize: 30, retrainInterval: 5);

            var timeSeriesPredictions = sut.Validate(new RegressionDecisionTreeLearner(), observations, targets);
            var timeSeriesTargets     = sut.GetValidationTargets(targets);

            var metric = new MeanSquaredErrorRegressionMetric();
            var error  = metric.Error(timeSeriesTargets, timeSeriesPredictions);

            Assert.AreEqual(0.13010151998135897, error, 0.00001);
        }
Exemple #5
0
        public void TimeSeriesCrossValidation_Validate_MaxTrainingSetSize()
        {
            var(observations, targets) = DataSetUtilities.LoadDecisionTreeDataSet();

            var sut = new TimeSeriesCrossValidation <double>(initialTrainingSize: 5, maxTrainingSetSize: 10);

            var timeSeriesPredictions = sut.Validate(new RegressionDecisionTreeLearner(), observations, targets);
            var timeSeriesTargets     = sut.GetValidationTargets(targets);

            var metric = new MeanSquaredErrorRegressionMetric();
            var error  = metric.Error(timeSeriesTargets, timeSeriesPredictions);

            Assert.AreEqual(0.27296549371962692, error, 0.00001);
        }
        public void TimeSeriesCrossValidation_Validate_RetrainInterval()
        {
            var(observations, targets) = DataSetUtilities.LoadDecisionTreeDataSet();

            var sut = new TimeSeriesCrossValidation <double>(initialTrainingSize: 5, retrainInterval: 5);

            var learner = new RegressionDecisionTreeLearner();
            var timeSeriesPredictions = sut.Validate(learner, observations, targets);
            var timeSeriesTargets     = sut.GetValidationTargets(targets);

            var metric = new MeanSquaredErrorRegressionMetric();
            var error  = metric.Error(timeSeriesTargets, timeSeriesPredictions);

            Assert.AreEqual(0.096346937132994928, error, 0.00001);
        }
        public void TimeSeriesCrossValidation_Validate_MaxTrainingSetSize_And_RetrainInterval()
        {
            var targetName   = "T";
            var parser       = new CsvParser(() => new StringReader(Resources.DecisionTreeData));
            var observations = parser.EnumerateRows(v => !v.Contains(targetName)).ToF64Matrix();
            var targets      = parser.EnumerateRows(targetName).ToF64Vector();

            var sut = new TimeSeriesCrossValidation <double>(initialTrainingSize: 5, maxTrainingSetSize: 30, retrainInterval: 5);

            var timeSeriesPredictions = sut.Validate(new RegressionDecisionTreeLearner(), observations, targets);
            var timeSeriesTargets     = sut.GetValidationTargets(targets);

            var metric = new MeanSquaredErrorRegressionMetric();
            var error  = metric.Error(timeSeriesTargets, timeSeriesPredictions);

            Assert.AreEqual(0.11347313000447182, error, 0.00001);
        }