public static TensorOld <double> Dot(this TensorOld <double> t1, TensorOld <double> t2) { if (t1.NumberDimensions > 2 || t2.NumberDimensions > 2) { throw new ProgrammingError("Dot product is not defined for tensors more that dimension 2"); } if (t1.NumberDimensions == 1) { t1 = t1.Reshape(t1.Len, 1); } if (t2.NumberDimensions == 1) { t2.Reshape(1, t2.Len); } if (t1.ShapeDimensions[1] != t2.ShapeDimensions[0]) { throw new ProgrammingError($"number of colums of the first matrix '{t1.ShapeDimensions[1]}' is not equal to the number of rows of the second: '{t2.ShapeDimensions[0]}'"); } int convolutionSize = t1.ShapeDimensions[1]; TensorOld <double> result = new TensorOld <double>(new[] { t1.ShapeDimensions[0], t2.ShapeDimensions[1] }); int numRows = t1.ShapeDimensions[0]; int numCols = t2.ShapeDimensions[1]; for (int col = 0; col < numCols; col++) { result.GetTensorSpan(1, col); for (int row = 0; row < numRows; row++) { ArraySubCollection <double> iter1 = t1.GetTensorSpan(1, row); ArraySubCollection <double> iter2 = t2.GetTensorSpan(0, 0, col); double cellValue = 0; for (int i = 0; i < convolutionSize; i++) { cellValue += iter1[i] * iter2[i]; } } } return(result); }
private TensorOld GetUnFlatten(TensorOld error) { return(error.Reshape(lastInputShape)); }
private TensorOld GetFlatten(TensorOld input) { var d1 = input.shape[0]; return(input.Reshape(d1, input.ElementCount / d1)); }