public override bool TestPoint(Transform xf, Vec2 p) { Vec2 pLocal = pool1; Vec2 temp = pool2; pLocal.Set(p).SubLocal(xf.P); Rot.MulTransUnsafe(xf.Q, pLocal, temp); pLocal.Set(temp); if (DEBUG) { Console.Out.WriteLine("--testPoint debug--"); Console.Out.WriteLine("Vertices: "); for (int i = 0; i < VertexCount; ++i) { Console.Out.WriteLine(Vertices[i]); } Console.Out.WriteLine("pLocal: " + pLocal); } for (int i = 0; i < VertexCount; ++i) { temp.Set(pLocal).SubLocal(Vertices[i]); float dot = Vec2.Dot(Normals[i], temp); if (dot > 0.0f) { return(false); } } return(true); }
public float Evaluate(int indexA, int indexB, float t) { SweepA.GetTransform(xfa, t); SweepB.GetTransform(xfb, t); switch (Type) { case Type.Points: { Rot.MulTransUnsafe(xfa.Q, Axis, axisA); Rot.MulTransUnsafe(xfb.Q, Axis.NegateLocal(), axisB); Axis.NegateLocal(); localPointA.Set(ProxyA.GetVertex(indexA)); localPointB.Set(ProxyB.GetVertex(indexB)); Transform.MulToOutUnsafe(xfa, localPointA, pointA); Transform.MulToOutUnsafe(xfb, localPointB, pointB); float separation = Vec2.Dot(pointB.SubLocal(pointA), Axis); return(separation); } case Type.FaceA: { // System.out.printf("We're faceA\n"); Rot.MulToOutUnsafe(xfa.Q, Axis, normal); Transform.MulToOutUnsafe(xfa, LocalPoint, pointA); Rot.MulTransUnsafe(xfb.Q, normal.NegateLocal(), axisB); normal.NegateLocal(); localPointB.Set(ProxyB.GetVertex(indexB)); Transform.MulToOutUnsafe(xfb, localPointB, pointB); float separation = Vec2.Dot(pointB.SubLocal(pointA), normal); return(separation); } case Type.FaceB: { // System.out.printf("We're faceB\n"); Rot.MulToOutUnsafe(xfb.Q, Axis, normal); Transform.MulToOutUnsafe(xfb, LocalPoint, pointB); Rot.MulTransUnsafe(xfa.Q, normal.NegateLocal(), axisA); normal.NegateLocal(); localPointA.Set(ProxyA.GetVertex(indexA)); Transform.MulToOutUnsafe(xfa, localPointA, pointA); float separation = Vec2.Dot(pointA.SubLocal(pointB), normal); return(separation); } default: Debug.Assert(false); return(0f); } }
public void GetLocalVectorToOutUnsafe(Vec2 worldVector, Vec2 result) { Rot.MulTransUnsafe(Xf.Q, worldVector, result); }
// float FindMinSeparation(int* indexA, int* indexB, float t) const public float FindMinSeparation(int[] indexes, float t) { SweepA.GetTransform(xfa, t); SweepB.GetTransform(xfb, t); switch (Type) { case Type.Points: { Rot.MulTransUnsafe(xfa.Q, Axis, axisA); Rot.MulTransUnsafe(xfb.Q, Axis.NegateLocal(), axisB); Axis.NegateLocal(); indexes[0] = ProxyA.GetSupport(axisA); indexes[1] = ProxyB.GetSupport(axisB); localPointA.Set(ProxyA.GetVertex(indexes[0])); localPointB.Set(ProxyB.GetVertex(indexes[1])); Transform.MulToOutUnsafe(xfa, localPointA, pointA); Transform.MulToOutUnsafe(xfb, localPointB, pointB); float separation = Vec2.Dot(pointB.SubLocal(pointA), Axis); return(separation); } case Type.FaceA: { Rot.MulToOutUnsafe(xfa.Q, Axis, normal); Transform.MulToOutUnsafe(xfa, LocalPoint, pointA); Rot.MulTransUnsafe(xfb.Q, normal.NegateLocal(), axisB); normal.NegateLocal(); indexes[0] = -1; indexes[1] = ProxyB.GetSupport(axisB); localPointB.Set(ProxyB.GetVertex(indexes[1])); Transform.MulToOutUnsafe(xfb, localPointB, pointB); float separation = Vec2.Dot(pointB.SubLocal(pointA), normal); return(separation); } case Type.FaceB: { Rot.MulToOutUnsafe(xfb.Q, Axis, normal); Transform.MulToOutUnsafe(xfb, LocalPoint, pointB); Rot.MulTransUnsafe(xfa.Q, normal.NegateLocal(), axisA); normal.NegateLocal(); indexes[1] = -1; indexes[0] = ProxyA.GetSupport(axisA); localPointA.Set(ProxyA.GetVertex(indexes[0])); Transform.MulToOutUnsafe(xfa, localPointA, pointA); float separation = Vec2.Dot(pointA.SubLocal(pointB), normal); return(separation); } default: Debug.Assert(false); indexes[0] = -1; indexes[1] = -1; return(0f); } }
/// <summary> /// Compute the closest points between two shapes. Supports any combination of: CircleShape and /// PolygonShape. The simplex cache is input/output. On the first call set SimplexCache.count to /// zero. /// </summary> /// <param name="output"></param> /// <param name="cache"></param> /// <param name="input"></param> public void GetDistance(DistanceOutput output, SimplexCache cache, DistanceInput input) { GJK_CALLS++; DistanceProxy proxyA = input.ProxyA; DistanceProxy proxyB = input.ProxyB; Transform transformA = input.TransformA; Transform transformB = input.TransformB; // Initialize the simplex. simplex.ReadCache(cache, proxyA, transformA, proxyB, transformB); // Get simplex vertices as an array. SimplexVertex[] vertices = simplex.Vertices; // These store the vertices of the last simplex so that we // can check for duplicates and prevent cycling. // (pooled above) simplex.GetClosestPoint(closestPoint); float distanceSqr1 = closestPoint.LengthSquared(); // Main iteration loop int iter = 0; while (iter < GJK_MAX_ITERS) { // Copy simplex so we can identify duplicates. int saveCount = simplex.Count; for (int i = 0; i < saveCount; i++) { saveA[i] = vertices[i].IndexA; saveB[i] = vertices[i].IndexB; } switch (simplex.Count) { case 1: break; case 2: simplex.Solve2(); break; case 3: simplex.Solve3(); break; default: Debug.Assert(false); break; } // If we have 3 points, then the origin is in the corresponding triangle. if (simplex.Count == 3) { break; } // Compute closest point. simplex.GetClosestPoint(closestPoint); float distanceSqr2 = closestPoint.LengthSquared(); // ensure progress if (distanceSqr2 >= distanceSqr1) { // break; } distanceSqr1 = distanceSqr2; // get search direction; simplex.GetSearchDirection(d); // Ensure the search direction is numerically fit. if (d.LengthSquared() < Settings.EPSILON * Settings.EPSILON) { // The origin is probably contained by a line segment // or triangle. Thus the shapes are overlapped. // We can't return zero here even though there may be overlap. // In case the simplex is a point, segment, or triangle it is difficult // to determine if the origin is contained in the CSO or very close to it. break; } /* * SimplexVertex* vertex = vertices + simplex.m_count; vertex.indexA = * proxyA.GetSupport(MulT(transformA.R, -d)); vertex.wA = Mul(transformA, * proxyA.GetVertex(vertex.indexA)); Vec2 wBLocal; vertex.indexB = * proxyB.GetSupport(MulT(transformB.R, d)); vertex.wB = Mul(transformB, * proxyB.GetVertex(vertex.indexB)); vertex.w = vertex.wB - vertex.wA; */ // Compute a tentative new simplex vertex using support points. SimplexVertex vertex = vertices[simplex.Count]; Rot.MulTransUnsafe(transformA.Q, d.NegateLocal(), temp); vertex.IndexA = proxyA.GetSupport(temp); Transform.MulToOutUnsafe(transformA, proxyA.GetVertex(vertex.IndexA), vertex.WA); // Vec2 wBLocal; Rot.MulTransUnsafe(transformB.Q, d.NegateLocal(), temp); vertex.IndexB = proxyB.GetSupport(temp); Transform.MulToOutUnsafe(transformB, proxyB.GetVertex(vertex.IndexB), vertex.WB); vertex.W.Set(vertex.WB).SubLocal(vertex.WA); // Iteration count is equated to the number of support point calls. ++iter; ++GJK_ITERS; // Check for duplicate support points. This is the main termination criteria. bool duplicate = false; for (int i = 0; i < saveCount; ++i) { if (vertex.IndexA == saveA[i] && vertex.IndexB == saveB[i]) { duplicate = true; break; } } // If we found a duplicate support point we must exit to avoid cycling. if (duplicate) { break; } // New vertex is ok and needed. ++simplex.Count; } GJK_MAX_ITERS = MathUtils.Max(GJK_MAX_ITERS, iter); // Prepare output. simplex.GetWitnessPoints(output.PointA, output.PointB); output.Distance = MathUtils.Distance(output.PointA, output.PointB); output.Iterations = iter; // Cache the simplex. simplex.WriteCache(cache); // Apply radii if requested. if (input.UseRadii) { float rA = proxyA.Radius; float rB = proxyB.Radius; if (output.Distance > rA + rB && output.Distance > Settings.EPSILON) { // Shapes are still no overlapped. // Move the witness points to the outer surface. output.Distance -= (rA + rB); normal.Set(output.PointB).SubLocal(output.PointA); normal.Normalize(); temp.Set(normal).MulLocal(rA); output.PointA.AddLocal(temp); temp.Set(normal).MulLocal(rB); output.PointB.SubLocal(temp); } else { // Shapes are overlapped when radii are considered. // Move the witness points to the middle. // Vec2 p = 0.5f * (output.pointA + output.pointB); output.PointA.AddLocal(output.PointB).MulLocal(.5f); output.PointB.Set(output.PointA); output.Distance = 0.0f; } } }