public static Pixbuf Get(ManagedArray layer, bool transpose = true) { if (transpose) { var Transposed = new ManagedArray(layer, false); ManagedMatrix.Transpose(Transposed, layer); var pixbuf = new Pixbuf(Colorspace.Rgb, false, 8, Transposed.x, Transposed.y); double min = Double.MaxValue; double max = Double.MinValue; GetNormalization(Transposed, ref min, ref max); Activation.Draw(pixbuf, Transposed, min, max); ManagedOps.Free(Transposed); return(pixbuf); } else { var pixbuf = new Pixbuf(Colorspace.Rgb, false, 8, layer.x, layer.y); double min = Double.MaxValue; double max = Double.MinValue; GetNormalization(layer, ref min, ref max); Activation.Draw(pixbuf, layer, min, max); return(pixbuf); } }
public static void Pixbuf(Pixbuf Digit, ManagedCNN cnn, ref int digit, ref double[] Probability) { // Bitmap Data is transposed var Transposed = new ManagedArray(28, 28, 1); var TestDigit = new ManagedArray(28, 28, 1); var ScaledDigit = Digit.ScaleSimple(28, 28, InterpType.Hyper); Convert(ScaledDigit, TestDigit); ManagedMatrix.Transpose(Transposed, TestDigit); cnn.FeedForward(Transposed); digit = 0; double max = double.MinValue; for (int y = 0; y < cnn.Output.y; y++) { var val = cnn.Output[0, y]; Probability[y] = val; if (val > max) { max = val; digit = y; } } ScaledDigit.Dispose(); ManagedOps.Free(TestDigit, Transposed); }
public static Pixbuf Get(ManagedCNN cnn, int layer, int i, int j) { if (layer >= 0 && layer < cnn.Layers.Count && cnn.Layers[layer].Type == LayerTypes.Convolution && i >= 0 && i < cnn.Layers[layer].FeatureMap.i && j >= 0 && j < cnn.Layers[layer].FeatureMap.j) { var FeatureMap = new ManagedArray(cnn.Layers[layer].FeatureMap.x, cnn.Layers[layer].FeatureMap.y, cnn.Layers[layer].FeatureMap.z); var Transposed = new ManagedArray(FeatureMap); var pixbuf = new Pixbuf(Colorspace.Rgb, false, 8, FeatureMap.y, FeatureMap.x); ManagedOps.Copy4DIJ2D(FeatureMap, cnn.Layers[layer].FeatureMap, i, j); ManagedMatrix.Transpose(Transposed, FeatureMap); // Get normalization values double min = Double.MaxValue; double max = Double.MinValue; FullyConnected.GetNormalization(Transposed, ref min, ref max); Activation.Draw(pixbuf, Transposed, min, max); ManagedOps.Free(Transposed); return(pixbuf); } // return empty pixbuf return(new Pixbuf(Colorspace.Rgb, false, 8, 1, 1)); }
public static Pixbuf Get(ManagedCNN cnn, int layer) { if (layer >= 0 && layer < cnn.Layers.Count && cnn.Layers[layer].Type == LayerTypes.Convolution) { var Transposed = new ManagedArray(cnn.Layers[layer].Bias); ManagedMatrix.Transpose(Transposed, cnn.Layers[layer].Bias); var pixbuf = new Pixbuf(Colorspace.Rgb, false, 8, Transposed.x, Transposed.y); // Get normalization values double min = Double.MaxValue; double max = Double.MinValue; FullyConnected.GetNormalization(Transposed, ref min, ref max); Activation.Draw(pixbuf, Transposed, min, max); ManagedOps.Free(Transposed); return(pixbuf); } // return empty pixbuf return(new Pixbuf(Colorspace.Rgb, false, 8, 1, 1)); }
public static void Bitmap(Bitmap Digit, ManagedCNN cnn, ref int digit, ref double[] Probability) { // Bitmap Data is transposed var Transposed = new ManagedArray(28, 28, 1); var TestDigit = new ManagedArray(28, 28, 1); var ScaledDigit = Resize(Digit, 28, 28, true); Convert(ScaledDigit, TestDigit); ManagedMatrix.Transpose(Transposed, TestDigit); cnn.FeedForward(Transposed); digit = 0; double max = 0; for (int y = 0; y < cnn.Output.y; y++) { var val = cnn.Output[0, y]; Probability[y] = val; if (val > max) { max = val; digit = y; } } ScaledDigit.Dispose(); ManagedOps.Free(TestDigit, Transposed); }
public void Generate() { var m = Rows(dx); var n = Cols(dx); var idx = 0; for (var i = 0; i < m; i++) { if (Math.Abs(alpha[i]) > 0) { idx++; } } ManagedOps.Free(ModelX, ModelY, Alpha, W, KernelParam); ModelX = new ManagedArray(Cols(dx), idx); ModelY = new ManagedArray(1, idx); Alpha = new ManagedArray(1, idx); KernelParam = new ManagedArray(kparam); var ii = 0; for (var i = 0; i < m; i++) { if (Math.Abs(alpha[i]) > 0) { for (int j = 0; j < n; j++) { ModelX[j, ii] = dx[j, i]; } ModelY[ii] = dy[i]; Alpha[ii] = alpha[i]; ii++; } } B = b; Passes = Iterations; ManagedOps.Copy2D(KernelParam, kparam, 0, 0); Type = ktype; var axy = ManagedMatrix.BSXMUL(alpha, dy); var tay = ManagedMatrix.Transpose(axy); var txx = ManagedMatrix.Multiply(tay, dx); W = ManagedMatrix.Transpose(txx); Trained = true; ManagedOps.Free(dx, dy, K, kparam, E, alpha, axy, tay, txx); }
static double Multiply(ManagedArray x1, ManagedArray x2) { Vectorize(x1, x2); var tx = ManagedMatrix.Transpose(x1); var xx = ManagedMatrix.Multiply(tx, x2); var x = xx[0]; ManagedOps.Free(tx, xx); return(x); }
public static Bitmap Get(ManagedCNN cnn, int layer, bool transpose = true) { if (layer >= 0 && layer < cnn.Layers.Count && cnn.Layers[layer].Type == LayerTypes.Convolution) { if (transpose) { var Transposed = new ManagedArray(cnn.Layers[layer].Bias, false); ManagedMatrix.Transpose(Transposed, cnn.Layers[layer].Bias); var bitmap = new Bitmap(Transposed.x, Transposed.y, PixelFormat.Format24bppRgb); // Get normalization values double min = Double.MaxValue; double max = Double.MinValue; GetNormalization(Transposed, ref min, ref max); Draw(bitmap, Transposed, min, max); ManagedOps.Free(Transposed); return(bitmap); } else { var bitmap = new Bitmap(cnn.Layers[layer].Bias.x, cnn.Layers[layer].Bias.y, PixelFormat.Format24bppRgb); // Get normalization values double min = Double.MaxValue; double max = Double.MinValue; GetNormalization(cnn.Layers[layer].Bias, ref min, ref max); Draw(bitmap, cnn.Layers[layer].Bias, min, max); return(bitmap); } } // return empty bitmap return(new Bitmap(1, 1, PixelFormat.Format24bppRgb)); }
public static Bitmap Get(ManagedCNN cnn, int layer, int map) { if (layer >= 0 && layer < cnn.Layers.Count && map >= 0 && map < cnn.Layers[layer].Activation.i) { var Activation = new ManagedArray(cnn.Layers[layer].Activation.x, cnn.Layers[layer].Activation.y, cnn.Layers[layer].Activation.z); var Transposed = new ManagedArray(Activation); var bitmap = new Bitmap(cnn.Layers[layer].Activation.x, cnn.Layers[layer].Activation.y, PixelFormat.Format24bppRgb); ManagedOps.Copy4D2D(Activation, cnn.Layers[layer].Activation, 0, map); ManagedMatrix.Transpose(Transposed, Activation); // Get normalization values double min = Double.MaxValue; double max = Double.MinValue; for (int y = 0; y < Transposed.y; y++) { for (int x = 0; x < Transposed.x; x++) { if (Transposed[x, y] > max) { max = Transposed[x, y]; } if (Transposed[x, y] < min) { min = Transposed[x, y]; } } } Draw(bitmap, Transposed, min, max); ManagedOps.Free(Activation, Transposed); return(bitmap); } // return empty bitmap return(new Bitmap(1, 1, PixelFormat.Format24bppRgb)); }
public static Pixbuf Get(ManagedCNN cnn, int layer, int map) { if (layer >= 0 && layer < cnn.Layers.Count && map >= 0 && map < cnn.Layers[layer].Activation.i) { var Activation = new ManagedArray(cnn.Layers[layer].Activation.x, cnn.Layers[layer].Activation.y, cnn.Layers[layer].Activation.z); var Transposed = new ManagedArray(Activation); var pixbuf = new Pixbuf(Colorspace.Rgb, false, 8, Activation.y, Activation.x); ManagedOps.Copy4D2D(Activation, cnn.Layers[layer].Activation, 0, map); ManagedMatrix.Transpose(Transposed, Activation); // Get normalization values double min = Double.MaxValue; double max = double.MinValue; for (int y = 0; y < Transposed.y; y++) { for (int x = 0; x < Transposed.x; x++) { if (Transposed[x, y] > max) { max = Transposed[x, y]; } if (Transposed[x, y] < min) { min = Transposed[x, y]; } } } Draw(pixbuf, Transposed, min, max); ManagedOps.Free(Activation, Transposed); return(pixbuf); } // return empty pixbuf return(new Pixbuf(Colorspace.Rgb, false, 8, 1, 1)); }
public static Bitmap Get(ManagedCNN cnn, int layer, int i, int j) { if (layer >= 0 && layer < cnn.Layers.Count && i >= 0 && i < cnn.Layers[layer].FeatureMap.i && j >= 0 && j < cnn.Layers[layer].FeatureMap.j) { var FeatureMap = new ManagedArray(cnn.Layers[layer].FeatureMap.x, cnn.Layers[layer].FeatureMap.y, cnn.Layers[layer].FeatureMap.z); var Transposed = new ManagedArray(FeatureMap); var bitmap = new Bitmap(cnn.Layers[layer].FeatureMap.x, cnn.Layers[layer].FeatureMap.y, PixelFormat.Format24bppRgb); ManagedOps.Copy4DIJ2D(FeatureMap, cnn.Layers[layer].FeatureMap, i, j); ManagedMatrix.Transpose(Transposed, FeatureMap); // Get normalization values double min = Double.MaxValue; double max = Double.MinValue; for (int y = 0; y < Transposed.y; y++) { for (int x = 0; x < Transposed.x; x++) { if (Transposed[x, y] > max) { max = Transposed[x, y]; } if (Transposed[x, y] < min) { min = Transposed[x, y]; } } } Draw(bitmap, Transposed, min, max); ManagedOps.Free(FeatureMap, Transposed); return(bitmap); } // return empty bitmap return(new Bitmap(1, 1, PixelFormat.Format24bppRgb)); }
public static Bitmap Get(ManagedArray layer, bool transpose = true) { Console.WriteLine("Layer dimensions: {0} {1}", layer.x, layer.y); if (transpose) { var Transposed = new ManagedArray(layer, false); ManagedMatrix.Transpose(Transposed, layer); var bitmap = new Bitmap(Transposed.x, Transposed.y, PixelFormat.Format24bppRgb); // Get normalization values double min = Double.MaxValue; double max = Double.MinValue; GetNormalization(Transposed, ref min, ref max); Draw(bitmap, Transposed, min, max); ManagedOps.Free(Transposed); return(bitmap); } else { var bitmap = new Bitmap(layer.x, layer.y, PixelFormat.Format24bppRgb); // Get normalization values double min = Double.MaxValue; double max = Double.MinValue; GetNormalization(layer, ref min, ref max); Draw(bitmap, layer, min, max); return(bitmap); } }
public void Setup(ManagedArray x, ManagedArray y, double c, KernelType kernel, ManagedArray param, double tolerance = 0.001, int maxpasses = 5, int category = 1) { ManagedOps.Free(dx, dy); dx = new ManagedArray(x); dy = new ManagedArray(y); ManagedOps.Copy2D(dx, x, 0, 0); ManagedOps.Copy2D(dy, y, 0, 0); ktype = kernel; // Data parameters var m = Rows(dx); Category = category; MaxIterations = maxpasses; Tolerance = tolerance; C = c; // Reset internal variables ManagedOps.Free(K, kparam, E, alpha); kparam = new ManagedArray(param); ManagedOps.Copy2D(kparam, param, 0, 0); // Variables alpha = new ManagedArray(1, m); E = new ManagedArray(1, m); b = 0; Iterations = 0; // Pre-compute the Kernel Matrix since our dataset is small // (In practice, optimized SVM packages that handle large datasets // gracefully will *not* do this) if (kernel == KernelType.LINEAR) { // Computation for the Linear Kernel // This is equivalent to computing the kernel on every pair of examples var tinput = ManagedMatrix.Transpose(dx); K = ManagedMatrix.Multiply(dx, tinput); double slope = kparam.Length() > 0 ? kparam[0] : 1; double inter = kparam.Length() > 1 ? kparam[1] : 0; ManagedMatrix.Multiply(K, slope); ManagedMatrix.Add(K, inter); ManagedOps.Free(tinput); } else if (kernel == KernelType.GAUSSIAN || kernel == KernelType.RADIAL) { // RBF Kernel // This is equivalent to computing the kernel on every pair of examples var pX2 = ManagedMatrix.Pow(dx, 2); var rX2 = ManagedMatrix.RowSums(pX2); var tX2 = ManagedMatrix.Transpose(rX2); var trX = ManagedMatrix.Transpose(dx); var tempK = new ManagedArray(m, m); var temp1 = new ManagedArray(m, m); var temp2 = ManagedMatrix.Multiply(dx, trX); ManagedMatrix.Expand(rX2, m, 1, tempK); ManagedMatrix.Expand(tX2, 1, m, temp1); ManagedMatrix.Multiply(temp2, -2); ManagedMatrix.Add(tempK, temp1); ManagedMatrix.Add(tempK, temp2); double sigma = kparam.Length() > 0 ? kparam[0] : 1; var g = Math.Abs(sigma) > 0 ? Math.Exp(-1 / (2 * sigma * sigma)) : 0; if (Type == KernelType.RADIAL) { ManagedMatrix.Sqrt(tempK); } K = ManagedMatrix.Pow(g, tempK); ManagedOps.Free(pX2, rX2, tX2, trX, tempK, temp1, temp2); } else { // Pre-compute the Kernel Matrix // The following can be slow due to the lack of vectorization K = new ManagedArray(m, m); var Xi = new ManagedArray(Cols(dx), 1); var Xj = new ManagedArray(Cols(dx), 1); for (var i = 0; i < m; i++) { ManagedOps.Copy2D(Xi, dx, 0, i); for (var j = 0; j < m; j++) { ManagedOps.Copy2D(Xj, dx, 0, j); K[j, i] = KernelFunction.Run(kernel, Xi, Xj, kparam); // the matrix is symmetric K[i, j] = K[j, i]; } } ManagedOps.Free(Xi, Xj); } eta = 0; L = 0; H = 0; // Map 0 (or other categories) to -1 for (var i = 0; i < Rows(dy); i++) { dy[i] = (int)dy[i] != Category ? -1 : 1; } }
// SVMPREDICT returns a vector of predictions using a trained SVM model //(svm_train). // // pred = SVMPREDICT(model, X) returns a vector of predictions using a // trained SVM model (svm_train). X is a mxn matrix where there each // example is a row. model is a svm model returned from svm_train. // predictions pred is a m x 1 column of predictions of {0, 1} values. // // Converted to R by: SD Separa (2016/03/18) // Converted to C# by: SD Separa (2018/09/29) public ManagedArray Predict(ManagedArray input) { var predictions = new ManagedArray(1, Rows(input)); if (Trained) { var x = new ManagedArray(input); if (Cols(x) == 1) { ManagedMatrix.Transpose(x, input); } else { ManagedOps.Copy2D(x, input, 0, 0); } var m = Rows(x); predictions.Resize(1, m); if (Type == KernelType.LINEAR) { ManagedMatrix.Multiply(predictions, x, W); ManagedMatrix.Add(predictions, B); } else if (Type == KernelType.GAUSSIAN || Type == KernelType.RADIAL) { // RBF Kernel // This is equivalent to computing the kernel on every pair of examples var pX1 = ManagedMatrix.Pow(x, 2); var pX2 = ManagedMatrix.Pow(ModelX, 2); var rX2 = ManagedMatrix.RowSums(pX2); var X1 = ManagedMatrix.RowSums(pX1); var X2 = ManagedMatrix.Transpose(rX2); var tX = ManagedMatrix.Transpose(ModelX); var tY = ManagedMatrix.Transpose(ModelY); var tA = ManagedMatrix.Transpose(Alpha); var rows = Rows(X1); var cols = Cols(X2); var tempK = new ManagedArray(cols, rows); var temp1 = new ManagedArray(cols, rows); var temp2 = ManagedMatrix.Multiply(x, tX); ManagedMatrix.Multiply(temp2, -2); ManagedMatrix.Expand(X1, cols, 1, tempK); ManagedMatrix.Expand(X2, 1, rows, temp1); ManagedMatrix.Add(tempK, temp1); ManagedMatrix.Add(tempK, temp2); var sigma = KernelParam.Length() > 0 ? KernelParam[0] : 1; if (Type == KernelType.RADIAL) { ManagedMatrix.Sqrt(tempK); } var g = Math.Abs(sigma) > 0 ? Math.Exp(-1 / (2 * sigma * sigma)) : 0; var Kernel = ManagedMatrix.Pow(g, tempK); var tempY = new ManagedArray(Cols(tY), rows); var tempA = new ManagedArray(Cols(tA), rows); ManagedMatrix.Expand(tY, 1, rows, tempY); ManagedMatrix.Expand(tA, 1, rows, tempA); ManagedMatrix.Product(Kernel, tempY); ManagedMatrix.Product(Kernel, tempA); var p = ManagedMatrix.RowSums(Kernel); ManagedOps.Copy2D(predictions, p, 0, 0); ManagedMatrix.Add(predictions, B); ManagedOps.Free(pX1, pX2, rX2, X1, X2, tempK, temp1, temp2, tX, tY, tA, tempY, tempA, Kernel, p); } else { var Xi = new ManagedArray(Cols(x), 1); var Xj = new ManagedArray(Cols(ModelX), 1); for (var i = 0; i < m; i++) { double prediction = 0; ManagedOps.Copy2D(Xi, x, 0, i); for (var j = 0; j < Rows(ModelX); j++) { ManagedOps.Copy2D(Xj, ModelX, 0, j); prediction += Alpha[j] * ModelY[j] * KernelFunction.Run(Type, Xi, Xj, KernelParam); } predictions[i] = prediction + B; } ManagedOps.Free(Xi, Xj); } ManagedOps.Free(x); } return(predictions); }