// SVMPREDICT returns a vector of predictions using a trained SVM model //(svm_train). // // pred = SVMPREDICT(model, X) returns a vector of predictions using a // trained SVM model (svm_train). X is a mxn matrix where there each // example is a row. model is a svm model returned from svm_train. // predictions pred is a m x 1 column of predictions of {0, 1} values. // // Converted to R by: SD Separa (2016/03/18) // Converted to C# by: SD Separa (2018/09/29) public ManagedArray Predict(ManagedArray input) { var predictions = new ManagedArray(1, Rows(input)); if (Trained) { var x = new ManagedArray(input); if (Cols(x) == 1) { ManagedMatrix.Transpose(x, input); } else { ManagedOps.Copy2D(x, input, 0, 0); } var m = Rows(x); predictions.Resize(1, m); if (Type == KernelType.LINEAR) { ManagedMatrix.Multiply(predictions, x, W); ManagedMatrix.Add(predictions, B); } else if (Type == KernelType.GAUSSIAN || Type == KernelType.RADIAL) { // RBF Kernel // This is equivalent to computing the kernel on every pair of examples var pX1 = ManagedMatrix.Pow(x, 2); var pX2 = ManagedMatrix.Pow(ModelX, 2); var rX2 = ManagedMatrix.RowSums(pX2); var X1 = ManagedMatrix.RowSums(pX1); var X2 = ManagedMatrix.Transpose(rX2); var tX = ManagedMatrix.Transpose(ModelX); var tY = ManagedMatrix.Transpose(ModelY); var tA = ManagedMatrix.Transpose(Alpha); var rows = Rows(X1); var cols = Cols(X2); var tempK = new ManagedArray(cols, rows); var temp1 = new ManagedArray(cols, rows); var temp2 = ManagedMatrix.Multiply(x, tX); ManagedMatrix.Multiply(temp2, -2); ManagedMatrix.Expand(X1, cols, 1, tempK); ManagedMatrix.Expand(X2, 1, rows, temp1); ManagedMatrix.Add(tempK, temp1); ManagedMatrix.Add(tempK, temp2); var sigma = KernelParam.Length() > 0 ? KernelParam[0] : 1; if (Type == KernelType.RADIAL) { ManagedMatrix.Sqrt(tempK); } var g = Math.Abs(sigma) > 0 ? Math.Exp(-1 / (2 * sigma * sigma)) : 0; var Kernel = ManagedMatrix.Pow(g, tempK); var tempY = new ManagedArray(Cols(tY), rows); var tempA = new ManagedArray(Cols(tA), rows); ManagedMatrix.Expand(tY, 1, rows, tempY); ManagedMatrix.Expand(tA, 1, rows, tempA); ManagedMatrix.Product(Kernel, tempY); ManagedMatrix.Product(Kernel, tempA); var p = ManagedMatrix.RowSums(Kernel); ManagedOps.Copy2D(predictions, p, 0, 0); ManagedMatrix.Add(predictions, B); ManagedOps.Free(pX1, pX2, rX2, X1, X2, tempK, temp1, temp2, tX, tY, tA, tempY, tempA, Kernel, p); } else { var Xi = new ManagedArray(Cols(x), 1); var Xj = new ManagedArray(Cols(ModelX), 1); for (var i = 0; i < m; i++) { double prediction = 0; ManagedOps.Copy2D(Xi, x, 0, i); for (var j = 0; j < Rows(ModelX); j++) { ManagedOps.Copy2D(Xj, ModelX, 0, j); prediction += Alpha[j] * ModelY[j] * KernelFunction.Run(Type, Xi, Xj, KernelParam); } predictions[i] = prediction + B; } ManagedOps.Free(Xi, Xj); } ManagedOps.Free(x); } return(predictions); }