public void TestKNearest() { int K = 10; int trainSampleCount = 100; #region Generate the training data and classes Matrix <float> trainData = new Matrix <float>(trainSampleCount, 2); Matrix <float> trainClasses = new Matrix <float>(trainSampleCount, 1); Image <Bgr, Byte> img = new Image <Bgr, byte>(500, 500); Matrix <float> sample = new Matrix <float>(1, 2); Matrix <float> trainData1 = trainData.GetRows(0, trainSampleCount >> 1, 1); trainData1.SetRandNormal(new MCvScalar(200), new MCvScalar(50)); Matrix <float> trainData2 = trainData.GetRows(trainSampleCount >> 1, trainSampleCount, 1); trainData2.SetRandNormal(new MCvScalar(300), new MCvScalar(50)); Matrix <float> trainClasses1 = trainClasses.GetRows(0, trainSampleCount >> 1, 1); trainClasses1.SetValue(1); Matrix <float> trainClasses2 = trainClasses.GetRows(trainSampleCount >> 1, trainSampleCount, 1); trainClasses2.SetValue(2); #endregion Matrix <float> results, neighborResponses; results = new Matrix <float>(sample.Rows, 1); neighborResponses = new Matrix <float>(sample.Rows, K); //dist = new Matrix<float>(sample.Rows, K); using (KNearest knn = new KNearest()) { knn.DefaultK = K; knn.IsClassifier = true; knn.Train(trainData, MlEnum.DataLayoutType.RowSample, trainClasses); //ParamDef[] defs = knn.GetParams(); //TODO: find out when knn.save will be implemented //knn.Save("knn.xml"); for (int i = 0; i < img.Height; i++) { for (int j = 0; j < img.Width; j++) { sample.Data[0, 0] = j; sample.Data[0, 1] = i; // estimates the response and get the neighbors' labels float response = knn.Predict(sample); //knn.FindNearest(sample, K, results, null, neighborResponses, null); int accuracy = 0; // compute the number of neighbors representing the majority for (int k = 0; k < K; k++) { if (neighborResponses.Data[0, k] == response) { accuracy++; } } // highlight the pixel depending on the accuracy (or confidence) img[i, j] = response == 1 ? (accuracy > 5 ? new Bgr(90, 0, 0) : new Bgr(90, 40, 0)) : (accuracy > 5 ? new Bgr(0, 90, 0) : new Bgr(40, 90, 0)); } } String knnModelStr; //save stat model to string using (FileStorage fs = new FileStorage(".yml", FileStorage.Mode.Write | FileStorage.Mode.Memory)) { knn.Write(fs); knnModelStr = fs.ReleaseAndGetString(); } //load stat model from string using (FileStorage fs = new FileStorage(knnModelStr, FileStorage.Mode.Read | FileStorage.Mode.Memory)) { KNearest knn2 = new KNearest(); knn2.Read(fs.GetRoot()); } } // display the original training samples for (int i = 0; i < (trainSampleCount >> 1); i++) { PointF p1 = new PointF(trainData1[i, 0], trainData1[i, 1]); img.Draw(new CircleF(p1, 2.0f), new Bgr(255, 100, 100), -1); PointF p2 = new PointF(trainData2[i, 0], trainData2[i, 1]); img.Draw(new CircleF(p2, 2.0f), new Bgr(100, 255, 100), -1); } //Emgu.CV.UI.ImageViewer.Show(img); }