internal static void BuildModelByRow(IModeler model, Data data, INumVar[] Buy, NumVarType type) { int nFoods = data.nFoods; int nNutrs = data.nNutrs; for (int j = 0; j < nFoods; j++) { Buy[j] = model.NumVar(data.foodMin[j], data.foodMax[j], type); } model.AddMinimize(model.ScalProd(data.foodCost, Buy)); for (int i = 0; i < nNutrs; i++) { model.AddRange(data.nutrMin[i], model.ScalProd(data.nutrPerFood[i], Buy), data.nutrMax[i]); } }
// The following method populates the problem with data for the // following linear program: // // Maximize // x1 + 2 x2 + 3 x3 // Subject To // - x1 + x2 + x3 <= 20 // x1 - 3 x2 + x3 <= 30 // Bounds // 0 <= x1 <= 40 // End // // using the IModeler API internal static void PopulateByRow(IModeler model, INumVar[][] var, IRange[][] rng) { double[] lb = { 0.0, 0.0, 0.0 }; double[] ub = { 40.0, System.Double.MaxValue, System.Double.MaxValue }; string[] varname = { "x1", "x2", "x3" }; INumVar[] x = model.NumVarArray(3, lb, ub, varname); var[0] = x; double[] objvals = { 1.0, 2.0, 3.0 }; model.AddMaximize(model.ScalProd(x, objvals)); rng[0] = new IRange[2]; rng[0][0] = model.AddLe(model.Sum(model.Prod(-1.0, x[0]), model.Prod(1.0, x[1]), model.Prod(1.0, x[2])), 20.0, "c1"); rng[0][1] = model.AddLe(model.Sum(model.Prod(1.0, x[0]), model.Prod(-3.0, x[1]), model.Prod(1.0, x[2])), 30.0, "c2"); }
} // END WorkerLP // This method creates the master ILP (arc variables x and degree constraints). // // Modeling variables: // forall (i,j) in A: // x(i,j) = 1, if arc (i,j) is selected // = 0, otherwise // // Objective: // minimize sum((i,j) in A) c(i,j) * x(i,j) // // Degree constraints: // forall i in V: sum((i,j) in delta+(i)) x(i,j) = 1 // forall i in V: sum((j,i) in delta-(i)) x(j,i) = 1 // // Binary constraints on arc variables: // forall (i,j) in A: x(i,j) in {0, 1} // internal static void CreateMasterILP(IModeler model, Data data, IIntVar[][] x) { int i, j; int numNodes = data.numNodes; // Create variables x(i,j) for (i,j) in A // For simplicity, also dummy variables x(i,i) are created. // Those variables are fixed to 0 and do not partecipate to // the constraints. for (i = 0; i < numNodes; ++i) { x[i] = new IIntVar[numNodes]; for (j = 0; j < numNodes; ++j) { x[i][j] = model.BoolVar("x." + i + "." + j); model.Add(x[i][j]); } x[i][i].UB = 0; } // Create objective function: minimize sum((i,j) in A ) c(i,j) * x(i,j) ILinearNumExpr objExpr = model.LinearNumExpr(); for (i = 0; i < numNodes; ++i) { objExpr.Add(model.ScalProd(x[i], data.arcCost[i])); } model.AddMinimize(objExpr); // Add the out degree constraints. // forall i in V: sum((i,j) in delta+(i)) x(i,j) = 1 for (i = 0; i < numNodes; ++i) { ILinearNumExpr expr = model.LinearNumExpr(); for (j = 0; j < i; ++j) { expr.AddTerm(x[i][j], 1.0); } for (j = i + 1; j < numNodes; ++j) { expr.AddTerm(x[i][j], 1.0); } model.AddEq(expr, 1.0); } // Add the in degree constraints. // forall i in V: sum((j,i) in delta-(i)) x(j,i) = 1 for (i = 0; i < numNodes; ++i) { ILinearNumExpr expr = model.LinearNumExpr(); for (j = 0; j < i; ++j) { expr.AddTerm(x[j][i], 1.0); } for (j = i + 1; j < numNodes; ++j) { expr.AddTerm(x[j][i], 1.0); } model.AddEq(expr, 1.0); } } // END CreateMasterILP
// The following method populates the problem with data for the // following linear program: // // Maximize // x1 + 2 x2 + 3 x3 // Subject To // - x1 + x2 + x3 <= 20 // x1 - 3 x2 + x3 <= 30 // Bounds // 0 <= x1 <= 40 // End // // using the IModeler API internal static void PopulateByRow(IModeler model, INumVar[][] var, IRange[][] rng) { double[] lb = {0.0, 0.0, 0.0}; double[] ub = {40.0, System.Double.MaxValue, System.Double.MaxValue}; string[] varname = {"x1", "x2", "x3"}; INumVar[] x = model.NumVarArray(3, lb, ub, varname); var[0] = x; double[] objvals = {1.0, 2.0, 3.0}; model.AddMaximize(model.ScalProd(x, objvals)); rng[0] = new IRange[2]; rng[0][0] = model.AddLe(model.Sum(model.Prod(-1.0, x[0]), model.Prod( 1.0, x[1]), model.Prod( 1.0, x[2])), 20.0, "c1"); rng[0][1] = model.AddLe(model.Sum(model.Prod( 1.0, x[0]), model.Prod(-3.0, x[1]), model.Prod( 1.0, x[2])), 30.0, "c2"); }
// This method creates the master ILP (arc variables x and degree constraints). // // Modeling variables: // forall (i,j) in A: // x(i,j) = 1, if arc (i,j) is selected // = 0, otherwise // // Objective: // minimize sum((i,j) in A) c(i,j) * x(i,j) // // Degree constraints: // forall i in V: sum((i,j) in delta+(i)) x(i,j) = 1 // forall i in V: sum((j,i) in delta-(i)) x(j,i) = 1 // // Binary constraints on arc variables: // forall (i,j) in A: x(i,j) in {0, 1} // internal static void CreateMasterILP(IModeler model, Data data, IIntVar[][] x) { int i, j; int numNodes = data.numNodes; // Create variables x(i,j) for (i,j) in A // For simplicity, also dummy variables x(i,i) are created. // Those variables are fixed to 0 and do not partecipate to // the constraints. for (i = 0; i < numNodes; ++i) { x[i] = new IIntVar[numNodes]; for (j = 0; j < numNodes; ++j) { x[i][j] = model.BoolVar("x." + i + "." + j); model.Add(x[i][j]); } x[i][i].UB = 0; } // Create objective function: minimize sum((i,j) in A ) c(i,j) * x(i,j) ILinearNumExpr objExpr = model.LinearNumExpr(); for (i = 0; i < numNodes; ++i) objExpr.Add(model.ScalProd(x[i], data.arcCost[i])); model.AddMinimize(objExpr); // Add the out degree constraints. // forall i in V: sum((i,j) in delta+(i)) x(i,j) = 1 for (i = 0; i < numNodes; ++i) { ILinearNumExpr expr = model.LinearNumExpr(); for (j = 0; j < i; ++j) expr.AddTerm(x[i][j], 1.0); for (j = i + 1; j < numNodes; ++j) expr.AddTerm(x[i][j], 1.0); model.AddEq(expr, 1.0); } // Add the in degree constraints. // forall i in V: sum((j,i) in delta-(i)) x(j,i) = 1 for (i = 0; i < numNodes; ++i) { ILinearNumExpr expr = model.LinearNumExpr(); for (j = 0; j < i; ++j) expr.AddTerm(x[j][i], 1.0); for (j = i + 1; j < numNodes; ++j) expr.AddTerm(x[j][i], 1.0); model.AddEq(expr, 1.0); } }