public void Draw(Frame frame)
        {
            if (frame.HasDisplayGeometryChanged)//.IsDisplayRotationChanged)
            {
                frame.TransformDisplayUvCoords(mQuadTexCoord, mQuadTexCoordTransformed);
            }

            GLES20.GlDisable(GLES20.GlDepthTest);
            GLES20.GlDepthMask(false);

            GLES20.GlBindTexture(GLES11Ext.GlTextureExternalOes, TextureId);

            GLES20.GlUseProgram(mQuadProgram);

            GLES20.GlVertexAttribPointer(
                mQuadPositionParam, COORDS_PER_VERTEX, GLES20.GlFloat, false, 0, mQuadVertices);

            GLES20.GlVertexAttribPointer(mQuadTexCoordParam, TEXCOORDS_PER_VERTEX,
                                         GLES20.GlFloat, false, 0, mQuadTexCoordTransformed);

            GLES20.GlEnableVertexAttribArray(mQuadPositionParam);
            GLES20.GlEnableVertexAttribArray(mQuadTexCoordParam);

            GLES20.GlDrawArrays(GLES20.GlTriangleStrip, 0, 4);

            // Disable vertex arrays
            GLES20.GlDisableVertexAttribArray(mQuadPositionParam);
            GLES20.GlDisableVertexAttribArray(mQuadTexCoordParam);

            // Restore the depth state for further drawing.
            GLES20.GlDepthMask(true);
            GLES20.GlEnable(GLES20.GlDepthTest);

            ShaderUtil.CheckGLError(TAG, "Draw");
        }
Exemple #2
0
        /**
         * Draws the AR background image.  The image will be drawn such that virtual content rendered
         * with the matrices provided by {@link Frame#getViewMatrix(float[], int)} and
         * {@link Session#getProjectionMatrix(float[], int, float, float)} will accurately follow
         * static physical objects.  This must be called <b>before</b> drawing virtual content.
         *
         * @param frame The last {@code Frame} returned by {@link Session#update()}.
         */
        public void Draw(Frame frame)
        {
            // If display rotation changed (also includes view size change), we need to re-query the uv
            // coordinates for the screen rect, as they may have changed as well.
            if (frame.HasDisplayGeometryChanged)
            {
                frame.TransformDisplayUvCoords(mQuadTexCoord, mQuadTexCoordTransformed);
            }

            // No need to test or write depth, the screen quad has arbitrary depth, and is expected
            // to be drawn first.
            GLES20.GlDisable(GLES20.GlDepthTest);
            GLES20.GlDepthMask(false);

            GLES20.GlBindTexture(mTextureTarget, TextureId);
            GLES20.GlTexParameteri(mTextureTarget, GLES20.GlTextureWrapS, GLES20.GlClampToEdge);
            GLES20.GlTexParameteri(mTextureTarget, GLES20.GlTextureWrapT, GLES20.GlClampToEdge);
            GLES20.GlTexParameteri(mTextureTarget, GLES20.GlTextureMinFilter, GLES20.GlNearest);
            GLES20.GlTexParameteri(mTextureTarget, GLES20.GlTextureMagFilter, GLES20.GlNearest);

            GLES20.GlUseProgram(mQuadProgram);

            // Set the vertex positions.
            GLES20.GlVertexAttribPointer(
                mQuadPositionParam, COORDS_PER_VERTEX, GLES20.GlFloat, false, 0, mQuadVertices);

            // Set the texture coordinates.
            GLES20.GlVertexAttribPointer(mQuadTexCoordParam, TEXCOORDS_PER_VERTEX,
                                         GLES20.GlFloat, false, 0, mQuadTexCoordTransformed);

            // Enable vertex arrays
            GLES20.GlEnableVertexAttribArray(mQuadPositionParam);
            GLES20.GlEnableVertexAttribArray(mQuadTexCoordParam);

            GLES20.GlDrawArrays(GLES20.GlTriangleStrip, 0, 4);

            // Disable vertex arrays
            GLES20.GlDisableVertexAttribArray(mQuadPositionParam);
            GLES20.GlDisableVertexAttribArray(mQuadTexCoordParam);

            // Restore the depth state for further drawing.
            GLES20.GlDepthMask(true);
            GLES20.GlEnable(GLES20.GlDepthTest);



            ShaderUtil.CheckGLError(TAG, "Draw");
        }
        private void DrawSortedPlans(List <ARPlane> sortedPlanes, float[] cameraViews, float[] cameraProjection)
        {
            ShaderUtil.CheckGlError(TAG, "Draw sorted plans start.");

            GLES20.GlDepthMask(false);
            GLES20.GlEnable(GLES20.GlBlend);
            GLES20.GlBlendFuncSeparate(
                GLES20.GlDstAlpha, GLES20.GlOne, GLES20.GlZero, GLES20.GlOneMinusSrcAlpha);
            GLES20.GlUseProgram(mProgram);
            GLES20.GlEnableVertexAttribArray(glPositionParameter);

            foreach (ARPlane plane in sortedPlanes)
            {
                float[] planeMatrix = new float[MATRIX_SIZE];
                plane.CenterPose.ToMatrix(planeMatrix, 0);

                Array.Copy(planeMatrix, modelMatrix, MATRIX_SIZE);
                float scaleU = 1.0f / LABEL_WIDTH;

                // Set the value of the plane angle uv matrix.
                planeAngleUvMatrix[0] = scaleU;
                planeAngleUvMatrix[1] = 0.0f;
                planeAngleUvMatrix[2] = 0.0f;
                float scaleV = 1.0f / LABEL_HEIGHT;
                planeAngleUvMatrix[3] = scaleV;

                int idx = plane.Label.Ordinal();
                Log.Debug(TAG, "Plane getLabel:" + idx);
                idx = Java.Lang.Math.Abs(idx);
                GLES20.GlActiveTexture(GLES20.GlTexture0 + idx);
                GLES20.GlBindTexture(GLES20.GlTexture2d, textures[idx]);
                GLES20.GlUniform1i(glTexture, idx);
                GLES20.GlUniformMatrix2fv(glPlaneUvMatrix, 1, false, planeAngleUvMatrix, 0);

                DrawLabel(cameraViews, cameraProjection);
            }

            GLES20.GlDisableVertexAttribArray(glPositionParameter);
            GLES20.GlBindTexture(GLES20.GlTexture2d, 0);
            GLES20.GlDisable(GLES20.GlBlend);
            GLES20.GlDepthMask(true);
            ShaderUtil.CheckGlError(TAG, "Draw sorted plans end.");
        }
        /// <summary>
        /// Render each frame.
        /// This method is called when Android.Opengl.GLSurfaceView.IRenderer's OnDrawFrame.
        /// </summary>
        /// <param name="frame">ARFrame</param>
        public void OnDrawFrame(ARFrame frame)
        {
            ShaderUtil.CheckGlError(TAG, "On draw frame start.");
            if (frame == null)
            {
                return;
            }
            if (frame.HasDisplayGeometryChanged)
            {
                frame.TransformDisplayUvCoords(mTexBuffer, mTexTransformedBuffer);
            }
            Clear();

            GLES20.GlDisable(GLES20.GlDepthTest);
            GLES20.GlDepthMask(false);

            GLES20.GlUseProgram(mProgram);

            // Set the texture ID.
            GLES20.GlBindTexture(GLES11Ext.GlTextureExternalOes, mExternalTextureId);

            // Set the projection matrix.
            GLES20.GlUniformMatrix4fv(mMatrix, 1, false, mProjectionMatrix, 0);

            GLES20.GlUniformMatrix4fv(mCoordMatrix, 1, false, coordMatrixs, 0);

            // Set the vertex.
            GLES20.GlEnableVertexAttribArray(mPosition);
            GLES20.GlVertexAttribPointer(mPosition, 2, GLES20.GlFloat, false, 0, mVerBuffer);

            // Set the texture coordinates.
            GLES20.GlEnableVertexAttribArray(mCoord);
            GLES20.GlVertexAttribPointer(mCoord, 2, GLES20.GlFloat, false, 0, mTexTransformedBuffer);

            // Number of vertices.
            GLES20.GlDrawArrays(GLES20.GlTriangleStrip, 0, 4);
            GLES20.GlDisableVertexAttribArray(mPosition);
            GLES20.GlDisableVertexAttribArray(mCoord);

            GLES20.GlDepthMask(true);
            GLES20.GlEnable(GLES20.GlDepthTest);
            ShaderUtil.CheckGlError(TAG, "On draw frame end.");
        }
        /**
         * Draws the model.
         *
         * @param cameraView  A 4x4 view matrix, in column-major order.
         * @param cameraPerspective  A 4x4 projection matrix, in column-major order.
         * @param lightIntensity  Illumination intensity.  Combined with diffuse and specular material
         *     properties.
         * @see #setBlendMode(BlendMode)
         * @see #updateModelMatrix(float[], float)
         * @see #setMaterialProperties(float, float, float, float)
         * @see android.opengl.Matrix
         */
        public void Draw(float[] cameraView, float[] cameraPerspective, float lightIntensity)
        {
            ShaderUtil.CheckGLError(TAG, "Before draw");

            // Build the ModelView and ModelViewProjection matrices
            // for calculating object position and light.
            Android.Opengl.Matrix.MultiplyMM(mModelViewMatrix, 0, cameraView, 0, mModelMatrix, 0);
            Android.Opengl.Matrix.MultiplyMM(mModelViewProjectionMatrix, 0, cameraPerspective, 0, mModelViewMatrix, 0);

            GLES20.GlUseProgram(mProgram);

            // Set the lighting environment properties.
            Android.Opengl.Matrix.MultiplyMV(mViewLightDirection, 0, mModelViewMatrix, 0, LIGHT_DIRECTION, 0);
            normalizeVec3(mViewLightDirection);
            GLES20.GlUniform4f(mLightingParametersUniform,
                               mViewLightDirection[0], mViewLightDirection[1], mViewLightDirection[2], lightIntensity);

            // Set the object material properties.
            GLES20.GlUniform4f(mMaterialParametersUniform, mAmbient, mDiffuse, mSpecular,
                               mSpecularPower);

            // Attach the object texture.
            GLES20.GlActiveTexture(GLES20.GlTexture0);
            GLES20.GlBindTexture(GLES20.GlTexture2d, mTextures[0]);
            GLES20.GlUniform1i(mTextureUniform, 0);

            // Set the vertex attributes.
            GLES20.GlBindBuffer(GLES20.GlArrayBuffer, mVertexBufferId);

            GLES20.GlVertexAttribPointer(
                mPositionAttribute, COORDS_PER_VERTEX, GLES20.GlFloat, false, 0, mVerticesBaseAddress);
            GLES20.GlVertexAttribPointer(
                mNormalAttribute, 3, GLES20.GlFloat, false, 0, mNormalsBaseAddress);
            GLES20.GlVertexAttribPointer(
                mTexCoordAttribute, 2, GLES20.GlFloat, false, 0, mTexCoordsBaseAddress);

            GLES20.GlBindBuffer(GLES20.GlArrayBuffer, 0);

            // Set the ModelViewProjection matrix in the shader.
            GLES20.GlUniformMatrix4fv(
                mModelViewUniform, 1, false, mModelViewMatrix, 0);
            GLES20.GlUniformMatrix4fv(
                mModelViewProjectionUniform, 1, false, mModelViewProjectionMatrix, 0);

            // Enable vertex arrays
            GLES20.GlEnableVertexAttribArray(mPositionAttribute);
            GLES20.GlEnableVertexAttribArray(mNormalAttribute);
            GLES20.GlEnableVertexAttribArray(mTexCoordAttribute);

            if (mBlendMode != BlendMode.Null)
            {
                GLES20.GlDepthMask(false);
                GLES20.GlEnable(GLES20.GlBlend);
                switch (mBlendMode)
                {
                case BlendMode.Shadow:
                    // Multiplicative blending function for Shadow.
                    GLES20.GlBlendFunc(GLES20.GlZero, GLES20.GlOneMinusSrcAlpha);
                    break;

                case BlendMode.Grid:
                    // Grid, additive blending function.
                    GLES20.GlBlendFunc(GLES20.GlSrcAlpha, GLES20.GlOneMinusSrcAlpha);
                    break;
                }
            }

            GLES20.GlBindBuffer(GLES20.GlElementArrayBuffer, mIndexBufferId);
            GLES20.GlDrawElements(GLES20.GlTriangles, mIndexCount, GLES20.GlUnsignedShort, 0);
            GLES20.GlBindBuffer(GLES20.GlElementArrayBuffer, 0);

            if (mBlendMode != BlendMode.Null)
            {
                GLES20.GlDisable(GLES20.GlBlend);
                GLES20.GlDepthMask(true);
            }

            // Disable vertex arrays
            GLES20.GlDisableVertexAttribArray(mPositionAttribute);
            GLES20.GlDisableVertexAttribArray(mNormalAttribute);
            GLES20.GlDisableVertexAttribArray(mTexCoordAttribute);

            GLES20.GlBindTexture(GLES20.GlTexture2d, 0);

            ShaderUtil.CheckGLError(TAG, "After draw");
        }
Exemple #6
0
        /**
         * Draws the collection of tracked planes, with closer planes hiding more distant ones.
         *
         * @param allPlanes The collection of planes to draw.
         * @param cameraPose The pose of the camera, as returned by {@link Frame#getPose()}
         * @param cameraPerspective The projection matrix, as returned by
         *     {@link Session#getProjectionMatrix(float[], int, float, float)}
         */
        public void DrawPlanes(IEnumerable <Plane> allPlanes, Pose cameraPose, float[] cameraPerspective)
        {
            // Planes must be sorted by distance from camera so that we draw closer planes first, and
            // they occlude the farther planes.
            List <SortablePlane> sortedPlanes = new List <SortablePlane>();

            float[] normal  = new float[3];
            float   cameraX = cameraPose.Tx();
            float   cameraY = cameraPose.Ty();
            float   cameraZ = cameraPose.Tz();

            foreach (var plane in allPlanes)
            {
                if (plane.GetType() != Plane.Type.HorizontalUpwardFacing ||
                    plane.GetTrackingState() != Plane.TrackingState.Tracking)
                {
                    continue;
                }

                var center = plane.CenterPose;
                // Get transformed Y axis of plane's coordinate system.
                center.GetTransformedAxis(1, 1.0f, normal, 0);
                // Compute dot product of plane's normal with vector from camera to plane center.
                float distance = (cameraX - center.Tx()) * normal[0] +
                                 (cameraY - center.Ty()) * normal[1] + (cameraZ - center.Tz()) * normal[2];
                if (distance < 0)
                {  // Plane is back-facing.
                    continue;
                }
                sortedPlanes.Add(new SortablePlane(distance, plane));
            }

            sortedPlanes.Sort((x, y) => x.Distance.CompareTo(y.Distance));


            var cameraView = new float[16];

            cameraPose.Inverse().ToMatrix(cameraView, 0);

            // Planes are drawn with additive blending, masked by the alpha channel for occlusion.

            // Start by clearing the alpha channel of the color buffer to 1.0.
            GLES20.GlClearColor(1, 1, 1, 1);
            GLES20.GlColorMask(false, false, false, true);
            GLES20.GlClear(GLES20.GlColorBufferBit);
            GLES20.GlColorMask(true, true, true, true);

            // Disable depth write.
            GLES20.GlDepthMask(false);

            // Additive blending, masked by alpha chanel, clearing alpha channel.
            GLES20.GlEnable(GLES20.GlBlend);
            GLES20.GlBlendFuncSeparate(
                GLES20.GlDstAlpha, GLES20.GlOne,            // RGB (src, dest)
                GLES20.GlZero, GLES20.GlOneMinusSrcAlpha);  // ALPHA (src, dest)

            // Set up the shader.
            GLES20.GlUseProgram(mPlaneProgram);

            // Attach the texture.
            GLES20.GlActiveTexture(GLES20.GlTexture0);
            GLES20.GlBindTexture(GLES20.GlTexture2d, mTextures[0]);
            GLES20.GlUniform1i(mTextureUniform, 0);

            // Shared fragment uniforms.
            GLES20.GlUniform4fv(mGridControlUniform, 1, GRID_CONTROL, 0);

            // Enable vertex arrays
            GLES20.GlEnableVertexAttribArray(mPlaneXZPositionAlphaAttribute);

            ShaderUtil.CheckGLError(TAG, "Setting up to draw planes");

            foreach (var sortedPlane in sortedPlanes)
            {
                var     plane       = sortedPlane.Plane;
                float[] planeMatrix = new float[16];
                plane.CenterPose.ToMatrix(planeMatrix, 0);


                updatePlaneParameters(planeMatrix, plane.ExtentX,
                                      plane.ExtentZ, plane.PlanePolygon);

                // Get plane index. Keep a map to assign same indices to same planes.

                int planeIndex = -1;
                if (!mPlaneIndexMap.TryGetValue(plane, out planeIndex))
                {
                    planeIndex = Java.Lang.Integer.ValueOf(mPlaneIndexMap.Count).IntValue();
                    mPlaneIndexMap.Add(plane, planeIndex);
                }

                // Set plane color. Computed deterministically from the Plane index.
                int colorIndex = planeIndex % PLANE_COLORS_RGBA.Length;

                colorRgbaToFloat(mPlaneColor, PLANE_COLORS_RGBA[colorIndex]);
                GLES20.GlUniform4fv(mLineColorUniform, 1, mPlaneColor, 0);
                GLES20.GlUniform4fv(mDotColorUniform, 1, mPlaneColor, 0);

                // Each plane will have its own angle offset from others, to make them easier to
                // distinguish. Compute a 2x2 rotation matrix from the angle.
                float angleRadians = planeIndex * 0.144f;
                float uScale       = DOTS_PER_METER;
                float vScale       = DOTS_PER_METER * EQUILATERAL_TRIANGLE_SCALE;
                mPlaneAngleUvMatrix[0] = +(float)Math.Cos(angleRadians) * uScale;
                mPlaneAngleUvMatrix[1] = -(float)Math.Sin(angleRadians) * uScale;
                mPlaneAngleUvMatrix[2] = +(float)Math.Sin(angleRadians) * vScale;
                mPlaneAngleUvMatrix[3] = +(float)Math.Cos(angleRadians) * vScale;
                GLES20.GlUniformMatrix2fv(mPlaneUvMatrixUniform, 1, false, mPlaneAngleUvMatrix, 0);


                Draw(cameraView, cameraPerspective);
            }

            // Clean up the state we set
            GLES20.GlDisableVertexAttribArray(mPlaneXZPositionAlphaAttribute);
            GLES20.GlBindTexture(GLES20.GlTexture2d, 0);
            GLES20.GlDisable(GLES20.GlBlend);
            GLES20.GlDepthMask(true);

            ShaderUtil.CheckGLError(TAG, "Cleaning up after drawing planes");
        }
Exemple #7
0
        public void OnDrawFrame(IGL10 gl)
        {
            // Clear screen to notify driver it should not load any pixels from previous frame.
            GLES20.GlBindFramebuffer(GLES20.GlFramebuffer, 0);
            GLES20.GlViewport(0, 0, glSurfaceView.Width, glSurfaceView.Height);
            GLES20.GlClear(GLES20.GlColorBufferBit | GLES20.GlDepthBufferBit);

            if (arSession == null)
            {
                return;
            }

            // Notify ARCore session that the view size changed so that the perspective matrix and the video background
            // can be properly adjusted
            // displayRotationHelper.UpdateSessionIfNeeded(arSession);

            try
            {
                // Obtain the current frame from ARSession. When the configuration is set to
                // UpdateMode.BLOCKING (it is by default), this will throttle the rendering to the
                // camera framerate.
                Frame frame = arSession.Update();
                Google.AR.Core.Camera camera = frame.Camera;


                // Draw background.
                GLES20.GlViewport(0, 0, glSurfaceView.Width, glSurfaceView.Height);
                backgroundRenderer.Draw(frame);

                GLES20.GlBindFramebuffer(GLES20.GlFramebuffer, fboId);
                GLES20.GlViewport(0, 0, targetResolution.Width, targetResolution.Height);
                GLES20.GlClear(GLES20.GlColorBufferBit | GLES20.GlDepthBufferBit);
                backgroundRenderer.Draw(frame);
                GLES20.GlBindFramebuffer(GLES20.GlFramebuffer, 0);
                GLES20.GlViewport(0, 0, glSurfaceView.Width, glSurfaceView.Height);
                GlUtil.CheckNoGLES2Error("Switch framebuffers.");

                // Handle taps. Handling only one tap per frame, as taps are usually low frequency
                // compared to frame rate.
                MotionEvent tap = null;
                queuedSingleTaps.TryDequeue(out tap);

                if (tap != null && camera.TrackingState == TrackingState.Tracking)
                {
                    foreach (var hit in frame.HitTest(tap))
                    {
                        var trackable = hit.Trackable;

                        // Check if any plane was hit, and if it was hit inside the plane polygon.
                        if (trackable is Plane && ((Plane)trackable).IsPoseInPolygon(hit.HitPose))
                        {
                            // Cap the number of objects created. This avoids overloading both the
                            // rendering system and ARCore.
                            if (anchors.Count >= 16)
                            {
                                anchors[0].Detach();
                                anchors.RemoveAt(0);
                            }
                            // Adding an Anchor tells ARCore that it should track this position in
                            // space.  This anchor is created on the Plane to place the 3d model
                            // in the correct position relative to both the world and to the plane
                            anchors.Add(hit.CreateAnchor());

                            // Hits are sorted by depth. Consider only closest hit on a plane.
                            break;
                        }
                    }
                }

                // If not tracking, don't draw 3d objects.
                if (camera.TrackingState == TrackingState.Paused)
                {
                    return;
                }

                // Get projection matrix.
                float[] projmtx = new float[16];
                camera.GetProjectionMatrix(projmtx, 0, 0.1f, 100.0f);

                // Get camera matrix and draw.
                float[] viewmtx = new float[16];
                camera.GetViewMatrix(viewmtx, 0);

                // Compute lighting from average intensity of the image.
                var lightIntensity = frame.LightEstimate.PixelIntensity;

                // Visualize tracked points.
                var pointCloud = frame.AcquirePointCloud();
                pointCloudRenderer.Update(pointCloud);

                // App is repsonsible for releasing point cloud resources after using it
                pointCloud.Release();

                var planes = new List <Plane>();
                foreach (var p in arSession.GetAllTrackables(Java.Lang.Class.FromType(typeof(Plane))))
                {
                    var plane = (Plane)p;
                    planes.Add(plane);
                }

                // Check if we detected at least one plane. If so, hide the loading message.
                if (loadingMessageSnackbar != null)
                {
                    foreach (var plane in planes)
                    {
                        if (plane.GetType() == Plane.Type.HorizontalUpwardFacing &&
                            plane.TrackingState == TrackingState.Tracking)
                        {
                            HideLoadingMessage();
                            break;
                        }
                    }
                }

                // Draw(frame, camera, projmtx, viewmtx, lightIntensity, planes);


                GLES20.GlBindFramebuffer(GLES20.GlFramebuffer, fboId);
                GLES20.GlViewport(0, 0, targetResolution.Width, targetResolution.Height);
                // Restore the depth state for further drawing.
                GLES20.GlDepthMask(true);
                GLES20.GlEnable(GLES20.GlDepthTest);
                // Draw(frame, camera, projmtx, viewmtx, lightIntensity, planes);
                // DrawModels(projmtx, viewmtx, lightIntensity);


                if (doCaptureCameraFrame)
                {
                    var displayOrientedPose = camera.DisplayOrientedPose;
                    var pose = new VirtualStudio.Shared.DTOs.Tracking.Pose
                    {
                        Position    = new System.Numerics.Vector3(displayOrientedPose.Tx(), displayOrientedPose.Ty(), displayOrientedPose.Tz()),
                        Orientation = new System.Numerics.Vector4(displayOrientedPose.Qx(), displayOrientedPose.Qy(), displayOrientedPose.Qz(), displayOrientedPose.Qw()),
                        Projection  = new System.Numerics.Matrix4x4(
                            projmtx[0], projmtx[1], projmtx[2], projmtx[3],
                            projmtx[4], projmtx[5], projmtx[6], projmtx[7],
                            projmtx[8], projmtx[9], projmtx[10], projmtx[11],
                            projmtx[12], projmtx[13], projmtx[14], projmtx[15]
                            )
                    };
                    webRtcClient.SendMessage(pose.ToBinary());
                    counter = 0;

                    var textureBuffer = new TextureBufferImpl(targetResolution.Width, targetResolution.Height, VideoFrame.TextureBufferType.Rgb, renderTextureId, new Android.Graphics.Matrix(), null, null, null);
                    var i420Buffer    = yuvConverter.Convert(textureBuffer);
                    VideoFrameAvailable?.Invoke(this, i420Buffer);
                }
            }
            catch (System.Exception ex)
            {
                // Avoid crashing the application due to unhandled exceptions.
                Log.Error(TAG, "Exception on the OpenGL thread", ex);
            }
        }