/// <summary> /// Compute inset from input polygon. If requested, will check for /// topological changes and try smaller insets, and if that fails, /// will just return input polygon. /// </summary> protected virtual List <GeneralPolygon2d> ComputeInitialInsetPolygon( bool bForcePreserveTopology) { double fInset = ToolWidth * InsetFromInputPolygonX; List <GeneralPolygon2d> insetPolys = ClipperUtil.MiterOffset(Polygon, -fInset); if (bForcePreserveTopology == false) { return(insetPolys); } if (check_large_topology_change(Polygon, insetPolys, fInset)) { fInset /= 2; insetPolys = ClipperUtil.MiterOffset(Polygon, -fInset); if (check_large_topology_change(Polygon, insetPolys, fInset)) { insetPolys = new List <GeneralPolygon2d>() { Polygon } } ; } return(insetPolys); }
/* * functions for subclasses to override to customize behavior */ protected virtual GeneralPolygon2d[] process_input_polys_before_sort(GeneralPolygon2d[] polys) { if (Offsets.Count == 0) { return(polys); } List <GeneralPolygon2d> newPolys = new List <GeneralPolygon2d>(); bool modified = false; foreach (var poly in polys) { double offset; if (Offsets.TryGetValue(poly, out offset) && Math.Abs(offset) > MathUtil.ZeroTolerancef) { List <GeneralPolygon2d> offsetPolys = ClipperUtil.MiterOffset(poly, offset); foreach (var newpoly in offsetPolys) { transfer_tags(poly, newpoly); newPolys.Add(newpoly); } modified = true; } else { newPolys.Add(poly); } } if (modified == false) { return(polys); } return(newPolys.ToArray()); }
/// <summary> /// Shrink holes inside polys such that if we do offset/2, the hole and /// outer offsets will (probably) not collide. Two options: /// 1) contract and then dilate each hole. This doesn't handle long skinny holes? /// 2) shrink outer by offset and then intersect with holes /// Currently using (2). This is better, right? /// </summary> protected void FilterHoles(List <GeneralPolygon2d> polys, double offset) { foreach (var poly in polys) { if (poly.Holes.Count == 0) { continue; } List <GeneralPolygon2d> outer_inset = ClipperUtil.MiterOffset( new GeneralPolygon2d(poly.Outer), -offset); List <GeneralPolygon2d> hole_polys = new List <GeneralPolygon2d>(); foreach (var hole in poly.Holes) { hole.Reverse(); hole_polys.Add(new GeneralPolygon2d(hole)); } //List<GeneralPolygon2d> contracted = ClipperUtil.MiterOffset(hole_polys, -offset, 0.01); //List<GeneralPolygon2d> dilated = ClipperUtil.MiterOffset(hole_polys, offset, 0.01); List <GeneralPolygon2d> dilated = ClipperUtil.Intersection(hole_polys, outer_inset, 0.01); poly.ClearHoles(); List <Polygon2d> new_holes = new List <Polygon2d>(); foreach (var dpoly in dilated) { dpoly.Outer.Reverse(); poly.AddHole(dpoly.Outer, false, false); } } }
protected virtual GeneralPolygon2d[] process_input_polys_after_sort(GeneralPolygon2d[] solids) { // construct thickened solids Thickened = new Dictionary <GeneralPolygon2d, List <GeneralPolygon2d> >(); for (int k = 0; k < solids.Length; ++k) { double clearance; if (Clearances.TryGetValue(solids[k], out clearance) && clearance > 0) { Thickened.Add(solids[k], ClipperUtil.MiterOffset(solids[k], clearance)); } } return(solids); }
private LayerCache build_cache(PrintLayerData layerData) { LayerCache cache = new LayerCache(); cache.SupportAreas = ClipperUtil.MiterOffset(layerData.SupportAreas, layerData.Settings.Machine.NozzleDiamMM); cache.SupportAreaBounds = new AxisAlignedBox2d[cache.SupportAreas.Count]; cache.AllSupportBounds = AxisAlignedBox2d.Empty; for (int i = 0; i < cache.SupportAreas.Count; ++i) { cache.SupportAreaBounds[i] = cache.SupportAreas[i].Bounds; cache.AllSupportBounds.Contain(cache.SupportAreaBounds[i]); } return(cache); }
protected virtual List <GeneralPolygon2d> remove_cavity(List <GeneralPolygon2d> solids, GeneralPolygon2d cavity) { double offset = 0; if (Cavity_Clearances.ContainsKey(cavity)) { offset = Cavity_Clearances[cavity]; } if (Cavity_Offsets.ContainsKey(cavity)) { offset += Cavity_Offsets[cavity]; } if (Math.Abs(offset) > 0.0001) { var offset_cavities = ClipperUtil.MiterOffset(cavity, offset, MIN_AREA); return(ClipperUtil.Difference(solids, offset_cavities, MIN_AREA)); } else { return(ClipperUtil.Difference(solids, cavity, MIN_AREA)); } }
virtual public void PreRender() { if (in_shutdown()) { return; } if (parameters_dirty) { // offset List <GeneralPolygon2d> offset = ClipperUtil.RoundOffset(combined_all, offset_distance); // aggressively simplify after round offset... foreach (var poly in offset) { poly.Simplify(path_width); } // subtract initial and add tiny gap so these don't get merged by slicer if (SubtractSolids) { offset = ClipperUtil.Difference(offset, combined_solid); offset = ClipperUtil.MiterOffset(offset, -path_width * 0.1); } offset = CurveUtils2.FilterDegenerate(offset, 0.001); foreach (var poly in offset) { poly.Simplify(path_width * 0.02); } DMesh3 mesh = new DMesh3(); MeshEditor editor = new MeshEditor(mesh); foreach (var poly in offset) { TriangulatedPolygonGenerator polygen = new TriangulatedPolygonGenerator() { Polygon = poly }; editor.AppendMesh(polygen.Generate().MakeDMesh()); } MeshTransforms.ConvertZUpToYUp(mesh); if (mesh.TriangleCount > 0) { MeshExtrudeMesh extrude = new MeshExtrudeMesh(mesh); extrude.ExtrudedPositionF = (v, n, vid) => { return(v + Layers * layer_height * Vector3d.AxisY); }; extrude.Extrude(); MeshTransforms.Translate(mesh, -mesh.CachedBounds.Min.y * Vector3d.AxisY); } PreviewSO.ReplaceMesh(mesh, true); //Vector3d translate = scene_bounds.Point(1, -1, 1); //translate.x += spiral.Bounds.Width + PathWidth; //Frame3f sceneF = Frame3f.Identity.Translated((Vector3f)translate); //PreviewSO.SetLocalFrame(sceneF, CoordSpace.SceneCoords); parameters_dirty = false; } }
protected virtual void fill_bridge_region_decompose(GeneralPolygon2d poly, IFillPathScheduler2d scheduler, PrintLayerData layer_data) { poly.Simplify(0.1, 0.01, true); TriangulatedPolygonGenerator generator = new TriangulatedPolygonGenerator() { Polygon = poly, Subdivisions = 16 }; DMesh3 mesh = generator.Generate().MakeDMesh(); //Util.WriteDebugMesh(mesh, "/Users/rms/scratch/bridgemesh.obj"); //List<Polygon2d> polys = decompose_mesh_recursive(mesh); List <Polygon2d> polys = decompose_cluster_up(mesh); Util.WriteDebugMesh(mesh, "/Users/rms/scratch/bridgemesh_reduce.obj"); double spacing = Settings.BridgeFillPathSpacingMM(); foreach (Polygon2d polypart in polys) { Box2d box = polypart.MinimalBoundingBox(0.00001); Vector2d axis = (box.Extent.x > box.Extent.y) ? box.AxisY : box.AxisX; double angle = Math.Atan2(axis.y, axis.x) * MathUtil.Rad2Deg; GeneralPolygon2d gp = new GeneralPolygon2d(polypart); ShellsFillPolygon shells_fill = new ShellsFillPolygon(gp); shells_fill.PathSpacing = Settings.SolidFillPathSpacingMM(); shells_fill.ToolWidth = Settings.Machine.NozzleDiamMM; shells_fill.Layers = 1; shells_fill.InsetFromInputPolygonX = 0.25; shells_fill.ShellType = ShellsFillPolygon.ShellTypes.BridgeShell; shells_fill.FilterSelfOverlaps = false; shells_fill.Compute(); scheduler.AppendCurveSets(shells_fill.GetFillCurves()); var fillPolys = shells_fill.InnerPolygons; double offset = Settings.Machine.NozzleDiamMM * Settings.SolidFillBorderOverlapX; fillPolys = ClipperUtil.MiterOffset(fillPolys, offset); foreach (var fp in fillPolys) { BridgeLinesFillPolygon fill_gen = new BridgeLinesFillPolygon(fp) { InsetFromInputPolygon = false, PathSpacing = spacing, ToolWidth = Settings.Machine.NozzleDiamMM, AngleDeg = angle, }; fill_gen.Compute(); scheduler.AppendCurveSets(fill_gen.GetFillCurves()); } } // fit bbox to try to find fill angle that has shortest spans //Box2d box = poly.Outer.MinimalBoundingBox(0.00001); //Vector2d axis = (box.Extent.x > box.Extent.y) ? box.AxisY : box.AxisX; //double angle = Math.Atan2(axis.y, axis.x) * MathUtil.Rad2Deg; // [RMS] should we do something like this? //if (Settings.SolidFillBorderOverlapX > 0) { // double offset = Settings.Machine.NozzleDiamMM * Settings.SolidFillBorderOverlapX; // fillPolys = ClipperUtil.MiterOffset(fillPolys, offset); //} }
/// <summary> /// Slice the meshes and return the slice stack. /// </summary> public Result Compute() { Result result = new Result(); if (Meshes.Count == 0) { return(result); } // find Z interval we want to slice in Interval1d zrange = Interval1d.Empty; foreach (var meshinfo in Meshes) { zrange.Contain(meshinfo.bounds.Min.z); zrange.Contain(meshinfo.bounds.Max.z); } if (SetMinZValue != double.MinValue) { zrange.a = SetMinZValue; } result.TopZ = Math.Round(zrange.b, PrecisionDigits); result.BaseZ = Math.Round(zrange.a, PrecisionDigits); // [TODO] might be able to make better decisions if we took flat regions // into account when constructing initial Z-heights? if we have large flat // region just below Zstep, might make sense to do two smaller Z-steps so we // can exactly hit it?? // construct list of clearing Z-heights List <double> clearingZLayers = new List <double>(); double cur_layer_z = zrange.b; int layer_i = 0; while (cur_layer_z > zrange.a) { double layer_height = get_layer_height(layer_i); cur_layer_z -= layer_height; double z = Math.Round(cur_layer_z, PrecisionDigits); clearingZLayers.Add(z); layer_i++; } if (clearingZLayers.Last() < result.BaseZ) { clearingZLayers[clearingZLayers.Count - 1] = result.BaseZ; } if (clearingZLayers.Last() == clearingZLayers[clearingZLayers.Count - 2]) { clearingZLayers.RemoveAt(clearingZLayers.Count - 1); } // construct layer slices from Z-heights List <PlanarSlice> clearing_slice_list = new List <PlanarSlice>(); layer_i = 0; for (int i = 0; i < clearingZLayers.Count; ++i) { double layer_height = (i == clearingZLayers.Count - 1) ? (result.TopZ - clearingZLayers[i]) : (clearingZLayers[i + 1] - clearingZLayers[i]); double z = clearingZLayers[i]; Interval1d zspan = new Interval1d(z, z + layer_height); if (SliceLocation == SliceLocations.EpsilonBase) { z += 0.001; } PlanarSlice slice = SliceFactoryF(zspan, z, layer_i); clearing_slice_list.Add(slice); layer_i++; } int NH = clearing_slice_list.Count; if (NH > MaxLayerCount) { throw new Exception("MeshPlanarSlicer.Compute: exceeded layer limit. Increase .MaxLayerCount."); } PlanarSlice[] clearing_slices = clearing_slice_list.ToArray(); // assume Resolve() takes 2x as long as meshes... TotalCompute = (Meshes.Count * NH) + (2 * NH); Progress = 0; // compute slices separately for each mesh for (int mi = 0; mi < Meshes.Count; ++mi) { if (Cancelled()) { break; } DMesh3 mesh = Meshes[mi].mesh; PrintMeshOptions mesh_options = Meshes[mi].options; // [TODO] should we hang on to this spatial? or should it be part of assembly? DMeshAABBTree3 spatial = new DMeshAABBTree3(mesh, true); AxisAlignedBox3d bounds = Meshes[mi].bounds; bool is_cavity = mesh_options.IsCavity; bool is_crop = mesh_options.IsCropRegion; bool is_support = mesh_options.IsSupport; bool is_closed = (mesh_options.IsOpen) ? false : mesh.IsClosed(); var useOpenMode = (mesh_options.OpenPathMode == PrintMeshOptions.OpenPathsModes.Default) ? DefaultOpenPathMode : mesh_options.OpenPathMode; if (is_crop || is_support) { throw new Exception("Not supported!"); } // each layer is independent so we can do in parallel gParallel.ForEach(Interval1i.Range(NH), (i) => { if (Cancelled()) { return; } double z = clearing_slices[i].Z; if (z < bounds.Min.z || z > bounds.Max.z) { return; } // compute cut Polygon2d[] polys; PolyLine2d[] paths; ComputeSlicePlaneCurves(mesh, spatial, z, is_closed, out polys, out paths); if (is_closed) { // construct planar complex and "solids" // (ie outer polys and nested holes) PlanarComplex complex = new PlanarComplex(); foreach (Polygon2d poly in polys) { complex.Add(poly); } PlanarComplex.FindSolidsOptions options = PlanarComplex.FindSolidsOptions.Default; options.WantCurveSolids = false; options.SimplifyDeviationTolerance = 0.001; options.TrustOrientations = true; options.AllowOverlappingHoles = true; PlanarComplex.SolidRegionInfo solids = complex.FindSolidRegions(options); List <GeneralPolygon2d> solid_polygons = ApplyValidRegions(solids.Polygons); if (is_cavity) { add_cavity_polygons(clearing_slices[i], solid_polygons, mesh_options); } else { if (ExpandStockAmount > 0) { solid_polygons = ClipperUtil.MiterOffset(solid_polygons, ExpandStockAmount); } add_solid_polygons(clearing_slices[i], solid_polygons, mesh_options); } } Interlocked.Increment(ref Progress); }); // end of parallel.foreach } // end mesh iter // resolve planar intersections, etc gParallel.ForEach(Interval1i.Range(NH), (i) => { if (Cancelled()) { return; } clearing_slices[i].Resolve(); Interlocked.Add(ref Progress, 2); }); // add to clearing stack result.Clearing = SliceStackFactoryF(); for (int k = 0; k < clearing_slices.Length; ++k) { result.Clearing.Add(clearing_slices[k]); } /* * Horizontal planar regions finishing pass. * First we find all planar horizontal Z-regions big enough to mill. * Then we add slices at the Z's we haven't touched yet. * * Cannot just 'fill' planar regions because we will miss edges that might * be millable. So we grow region and then intersect with full-slice millable area. */ // find set of horizontal flat regions Dictionary <double, List <PlanarRegion> > flat_regions = FindPlanarZRegions(ToolDiameter); if (flat_regions.Count == 0) { goto done_slicing; } // if we have already milled this exact Z-height in clearing pass, then we can skip it List <double> doneZ = new List <double>(); foreach (double z in flat_regions.Keys) { if (clearingZLayers.Contains(z)) { doneZ.Add(z); } } foreach (var z in doneZ) { flat_regions.Remove(z); } // create slice for each layer PlanarSlice[] horz_slices = new PlanarSlice[flat_regions.Count]; List <double> flatZ = new List <double>(flat_regions.Keys); flatZ.Sort(); for (int k = 0; k < horz_slices.Length; ++k) { double z = flatZ[k]; Interval1d zspan = new Interval1d(z, z + LayerHeightMM); horz_slices[k] = SliceFactoryF(zspan, z, k); // compute full millable region slightly above this slice. PlanarSlice clip_slice = ComputeSolidSliceAtZ(z + 0.0001, false); clip_slice.Resolve(); // extract planar polys List <Polygon2d> polys = GetPlanarPolys(flat_regions[z]); PlanarComplex complex = new PlanarComplex(); foreach (Polygon2d poly in polys) { complex.Add(poly); } // convert to planar solids PlanarComplex.FindSolidsOptions options = PlanarComplex.FindSolidsOptions.SortPolygons; options.SimplifyDeviationTolerance = 0.001; options.TrustOrientations = true; options.AllowOverlappingHoles = true; PlanarComplex.SolidRegionInfo solids = complex.FindSolidRegions(options); List <GeneralPolygon2d> solid_polygons = ApplyValidRegions(solids.Polygons); // If planar solid has holes, then when we do inset later, we might lose // too-thin parts. Shrink the holes to avoid this case. //FilterHoles(solid_polygons, 0.55 * ToolDiameter); // ok now we need to expand region and intersect with full region. solid_polygons = ClipperUtil.MiterOffset(solid_polygons, ToolDiameter * 0.5, 0.0001); solid_polygons = ClipperUtil.Intersection(solid_polygons, clip_slice.Solids, 0.0001); // Same idea as above, but if we do after, we keep more of the hole and // hence do less extra clearing. // Also this could then be done at the slicer level instead of here... // (possibly this entire thing should be done at slicer level, except we need clip_slice!) FilterHoles(solid_polygons, 1.1 * ToolDiameter); add_solid_polygons(horz_slices[k], solid_polygons, PrintMeshOptions.Default()); } // resolve planar intersections, etc int NF = horz_slices.Length; gParallel.ForEach(Interval1i.Range(NF), (i) => { if (Cancelled()) { return; } horz_slices[i].Resolve(); Interlocked.Add(ref Progress, 2); }); // add to clearing stack result.HorizontalFinish = SliceStackFactoryF(); for (int k = 0; k < horz_slices.Length; ++k) { result.HorizontalFinish.Add(horz_slices[k]); } done_slicing: return(result); }