public static uint DwordMod(BigInteger n, uint d) { ulong r = 0; uint i = n.length; while (i-- > 0) { r <<= 32; r |= n.data[i]; r %= d; } return (uint)r; }
public BigInteger ModInverse(BigInteger modulus) { return Kernel.modInverse(this, modulus); }
public ModulusRing(BigInteger modulus) { this.mod = modulus; // calculate constant = b^ (2k) / m uint i = mod.length << 1; constant = new BigInteger(Sign.Positive, i + 1); constant.data[i] = 0x00000001; constant = constant / mod; }
/// <summary> /// Generates a new, random BigInteger of the specified length. /// </summary> /// <param name="bits">The number of bits for the new number.</param> /// <param name="rng">A random number generator to use to obtain the bits.</param> /// <returns>A random number of the specified length.</returns> public static BigInteger GenerateRandom(int bits, RandomNumberGenerator rng) { int dwords = bits >> 5; int remBits = bits & 0x1F; if (remBits != 0) dwords++; BigInteger ret = new BigInteger(Sign.Positive, (uint)dwords + 1); byte[] random = new byte[dwords << 2]; rng.GetBytes(random); Buffer.BlockCopy(random, 0, ret.data, 0, (int)dwords << 2); if (remBits != 0) { uint mask = (uint)(0x01 << (remBits - 1)); ret.data[dwords - 1] |= mask; mask = (uint)(0xFFFFFFFF >> (32 - remBits)); ret.data[dwords - 1] &= mask; } else ret.data[dwords - 1] |= 0x80000000; ret.Normalize(); return ret; }
public string ToString(uint radix, string characterSet) { if (characterSet.Length < radix) throw new ArgumentException("charSet length less than radix", "characterSet"); if (radix == 1) throw new ArgumentException("There is no such thing as radix one notation", "radix"); if (this == 0) return "0"; if (this == 1) return "1"; string result = ""; BigInteger a = new BigInteger(this); while (a != 0) { uint rem = Kernel.SingleByteDivideInPlace(a, radix); result = characterSet[(int)rem] + result; } return result; }
public static BigInteger Divid(BigInteger bi, int i) { return (bi / i); }
public static BigInteger Multiply(BigInteger bi1, BigInteger bi2) { return (bi1 * bi2); }
public static unsafe void SquarePositive(BigInteger bi, ref uint[] wkSpace) { uint[] t = wkSpace; wkSpace = bi.data; uint[] d = bi.data; uint dl = bi.length; bi.data = t; fixed (uint* dd = d, tt = t) { uint* ttE = tt + t.Length; // Clear the dest for (uint* ttt = tt; ttt < ttE; ttt++) *ttt = 0; uint* dP = dd, tP = tt; for (uint i = 0; i < dl; i++, dP++) { if (*dP == 0) continue; ulong mcarry = 0; uint bi1val = *dP; uint* dP2 = dP + 1, tP2 = tP + 2 * i + 1; for (uint j = i + 1; j < dl; j++, tP2++, dP2++) { // k = i + j mcarry += ((ulong)bi1val * (ulong)*dP2) + *tP2; *tP2 = (uint)mcarry; mcarry >>= 32; } if (mcarry != 0) *tP2 = (uint)mcarry; } // Double t. Inlined for speed. tP = tt; uint x, carry = 0; while (tP < ttE) { x = *tP; *tP = (x << 1) | carry; carry = x >> (32 - 1); tP++; } if (carry != 0) *tP = carry; // Add in the diagnals dP = dd; tP = tt; for (uint* dE = dP + dl; (dP < dE); dP++, tP++) { ulong val = (ulong)*dP * (ulong)*dP + *tP; *tP = (uint)val; val >>= 32; *(++tP) += (uint)val; if (*tP < (uint)val) { uint* tP3 = tP; // Account for the first carry (*++tP3)++; // Keep adding until no carry while ((*tP3++) == 0) (*tP3)++; } } bi.length <<= 1; // Normalize length while (tt[bi.length - 1] == 0 && bi.length > 1) bi.length--; } }
/* * Never called in BigInteger (and part of a private class) * public static bool Double (uint [] u, int l) { uint x, carry = 0; uint i = 0; while (i < l) { x = u [i]; u [i] = (x << 1) | carry; carry = x >> (32 - 1); i++; } if (carry != 0) u [l] = carry; return carry != 0; }*/ #endregion #region Number Theory public static BigInteger gcd(BigInteger a, BigInteger b) { BigInteger x = a; BigInteger y = b; BigInteger g = y; while (x.length > 1) { g = x; x = y % x; y = g; } if (x == 0) return g; // TODO: should we have something here if we can convert to long? // // Now we can just do it with single precision. I am using the binary gcd method, // as it should be faster. // uint yy = x.data[0]; uint xx = y % yy; int t = 0; while (((xx | yy) & 1) == 0) { xx >>= 1; yy >>= 1; t++; } while (xx != 0) { while ((xx & 1) == 0) xx >>= 1; while ((yy & 1) == 0) yy >>= 1; if (xx >= yy) xx = (xx - yy) >> 1; else yy = (yy - xx) >> 1; } return yy << t; }
public static BigInteger RightShift(BigInteger bi, int n) { if (n == 0) return new BigInteger(bi); int w = n >> 5; int s = n & ((1 << 5) - 1); BigInteger ret = new BigInteger(Sign.Positive, bi.length - (uint)w + 1); uint l = (uint)ret.data.Length - 1; if (s != 0) { uint x, carry = 0; while (l-- > 0) { x = bi.data[l + w]; ret.data[l] = (x >> n) | carry; carry = x << (32 - n); } } else { while (l-- > 0) ret.data[l] = bi.data[l + w]; } ret.Normalize(); return ret; }
public static BigInteger MultiplyByDword(BigInteger n, uint f) { BigInteger ret = new BigInteger(Sign.Positive, n.length + 1); uint i = 0; ulong c = 0; do { c += (ulong)n.data[i] * (ulong)f; ret.data[i] = (uint)c; c >>= 32; } while (++i < n.length); ret.data[i] = (uint)c; ret.Normalize(); return ret; }
public static BigInteger LeftShift(BigInteger bi, int n) { if (n == 0) return new BigInteger(bi, bi.length + 1); int w = n >> 5; n &= ((1 << 5) - 1); BigInteger ret = new BigInteger(Sign.Positive, bi.length + 1 + (uint)w); uint i = 0, l = bi.length; if (n != 0) { uint x, carry = 0; while (i < l) { x = bi.data[i]; ret.data[i + w] = (x << n) | carry; carry = x >> (32 - n); i++; } ret.data[i + w] = carry; } else { while (i < l) { ret.data[i + w] = bi.data[i]; i++; } } ret.Normalize(); return ret; }
public static BigInteger[] multiByteDivide(BigInteger bi1, BigInteger bi2) { if (Kernel.Compare(bi1, bi2) == Sign.Negative) return new BigInteger[2] { 0, new BigInteger(bi1) }; bi1.Normalize(); bi2.Normalize(); if (bi2.length == 1) return DwordDivMod(bi1, bi2.data[0]); uint remainderLen = bi1.length + 1; int divisorLen = (int)bi2.length + 1; uint mask = 0x80000000; uint val = bi2.data[bi2.length - 1]; int shift = 0; int resultPos = (int)bi1.length - (int)bi2.length; while (mask != 0 && (val & mask) == 0) { shift++; mask >>= 1; } BigInteger quot = new BigInteger(Sign.Positive, bi1.length - bi2.length + 1); BigInteger rem = (bi1 << shift); uint[] remainder = rem.data; bi2 = bi2 << shift; int j = (int)(remainderLen - bi2.length); int pos = (int)remainderLen - 1; uint firstDivisorByte = bi2.data[bi2.length - 1]; ulong secondDivisorByte = bi2.data[bi2.length - 2]; while (j > 0) { ulong dividend = ((ulong)remainder[pos] << 32) + (ulong)remainder[pos - 1]; ulong q_hat = dividend / (ulong)firstDivisorByte; ulong r_hat = dividend % (ulong)firstDivisorByte; do { if (q_hat == 0x100000000 || (q_hat * secondDivisorByte) > ((r_hat << 32) + remainder[pos - 2])) { q_hat--; r_hat += (ulong)firstDivisorByte; if (r_hat < 0x100000000) continue; } break; } while (true); // // At this point, q_hat is either exact, or one too large // (more likely to be exact) so, we attempt to multiply the // divisor by q_hat, if we get a borrow, we just subtract // one from q_hat and add the divisor back. // uint t; uint dPos = 0; int nPos = pos - divisorLen + 1; ulong mc = 0; uint uint_q_hat = (uint)q_hat; do { mc += (ulong)bi2.data[dPos] * (ulong)uint_q_hat; t = remainder[nPos]; remainder[nPos] -= (uint)mc; mc >>= 32; if (remainder[nPos] > t) mc++; dPos++; nPos++; } while (dPos < divisorLen); nPos = pos - divisorLen + 1; dPos = 0; // Overestimate if (mc != 0) { uint_q_hat--; ulong sum = 0; do { sum = ((ulong)remainder[nPos]) + ((ulong)bi2.data[dPos]) + sum; remainder[nPos] = (uint)sum; sum >>= 32; dPos++; nPos++; } while (dPos < divisorLen); } quot.data[resultPos--] = (uint)uint_q_hat; pos--; j--; } quot.Normalize(); rem.Normalize(); BigInteger[] ret = new BigInteger[2] { quot, rem }; if (shift != 0) ret[1] >>= shift; return ret; }
public static BigInteger[] DwordDivMod(BigInteger n, uint d) { BigInteger ret = new BigInteger(Sign.Positive, n.length); ulong r = 0; uint i = n.length; while (i-- > 0) { r <<= 32; r |= n.data[i]; ret.data[i] = (uint)(r / d); r %= d; } ret.Normalize(); BigInteger rem = (uint)r; return new BigInteger[] { ret, rem }; }
public static uint Modulus(BigInteger bi, uint ui) { return (bi % ui); }
public static uint modInverse(BigInteger bi, uint modulus) { uint a = modulus, b = bi % modulus; uint p0 = 0, p1 = 1; while (b != 0) { if (b == 1) return p1; p0 += (a / b) * p1; a %= b; if (a == 0) break; if (a == 1) return modulus - p0; p1 += (b / a) * p0; b %= a; } return 0; }
public static BigInteger Modulus(BigInteger bi1, BigInteger bi2) { return (bi1 % bi2); }
public static BigInteger modInverse(BigInteger bi, BigInteger modulus) { if (modulus.length == 1) return modInverse(bi, modulus.data[0]); BigInteger[] p = { 0, 1 }; BigInteger[] q = new BigInteger[2]; // quotients BigInteger[] r = { 0, 0 }; // remainders int step = 0; BigInteger a = modulus; BigInteger b = bi; ModulusRing mr = new ModulusRing(modulus); while (b != 0) { if (step > 1) { BigInteger pval = mr.Difference(p[0], p[1] * q[0]); p[0] = p[1]; p[1] = pval; } BigInteger[] divret = multiByteDivide(a, b); q[0] = q[1]; q[1] = divret[0]; r[0] = r[1]; r[1] = divret[1]; a = b; b = divret[1]; step++; } if (r[0] != 1) throw (new ArithmeticException("No inverse!")); return mr.Difference(p[0], p[1] * q[0]); }
public static BigInteger Divid(BigInteger bi1, BigInteger bi2) { return (bi1 / bi2); }
/* This is the BigInteger.Parse method I use. This method works because BigInteger.ToString returns the input I gave to Parse. */ public static BigInteger Parse(string number) { if (number == null) throw new ArgumentNullException("number"); int i = 0, len = number.Length; char c; bool digits_seen = false; BigInteger val = new BigInteger(0); if (number[i] == '+') { i++; } else if (number[i] == '-') { throw new FormatException(WouldReturnNegVal); } for (; i < len; i++) { c = number[i]; if (c == '\0') { i = len; continue; } if (c >= '0' && c <= '9') { val = val * 10 + (c - '0'); digits_seen = true; } else { if (Char.IsWhiteSpace(c)) { for (i++; i < len; i++) { if (!Char.IsWhiteSpace(number[i])) throw new FormatException(); } break; } else throw new FormatException(); } } if (!digits_seen) throw new FormatException(); return val; }
public static BigInteger Multiply(BigInteger bi, int i) { return (bi * i); }
public static BigInteger operator *(BigInteger bi1, BigInteger bi2) { if (bi1 == 0 || bi2 == 0) return 0; // // Validate pointers // if (bi1.data.Length < bi1.length) throw new IndexOutOfRangeException("bi1 out of range"); if (bi2.data.Length < bi2.length) throw new IndexOutOfRangeException("bi2 out of range"); BigInteger ret = new BigInteger(Sign.Positive, bi1.length + bi2.length); Kernel.Multiply(bi1.data, 0, bi1.length, bi2.data, 0, bi2.length, ret.data, 0); ret.Normalize(); return ret; }
public Sign Compare(BigInteger bi) { return Kernel.Compare(this, bi); }
// with names suggested by FxCop 1.30 public static BigInteger Add(BigInteger bi1, BigInteger bi2) { return (bi1 + bi2); }
public BigInteger GCD(BigInteger bi) { return Kernel.gcd(this, bi); }
public static BigInteger Subtract(BigInteger bi1, BigInteger bi2) { return (bi1 - bi2); }
public BigInteger ModPow(BigInteger exp, BigInteger n) { ModulusRing mr = new ModulusRing(n); return mr.Pow(this, exp); }
public static int Modulus(BigInteger bi, int i) { return (bi % i); }
public void BarrettReduction(BigInteger x) { BigInteger n = mod; uint k = n.length, kPlusOne = k + 1, kMinusOne = k - 1; // x < mod, so nothing to do. if (x.length < k) return; BigInteger q3; // // Validate pointers // if (x.data.Length < x.length) throw new IndexOutOfRangeException("x out of range"); // q1 = x / b^ (k-1) // q2 = q1 * constant // q3 = q2 / b^ (k+1), Needs to be accessed with an offset of kPlusOne // TODO: We should the method in HAC p 604 to do this (14.45) q3 = new BigInteger(Sign.Positive, x.length - kMinusOne + constant.length); Kernel.Multiply(x.data, kMinusOne, x.length - kMinusOne, constant.data, 0, constant.length, q3.data, 0); // r1 = x mod b^ (k+1) // i.e. keep the lowest (k+1) words uint lengthToCopy = (x.length > kPlusOne) ? kPlusOne : x.length; x.length = lengthToCopy; x.Normalize(); // r2 = (q3 * n) mod b^ (k+1) // partial multiplication of q3 and n BigInteger r2 = new BigInteger(Sign.Positive, kPlusOne); Kernel.MultiplyMod2p32pmod(q3.data, (int)kPlusOne, (int)q3.length - (int)kPlusOne, n.data, 0, (int)n.length, r2.data, 0, (int)kPlusOne); r2.Normalize(); if (r2 <= x) { Kernel.MinusEq(x, r2); } else { BigInteger val = new BigInteger(Sign.Positive, kPlusOne + 1); val.data[kPlusOne] = 0x00000001; Kernel.MinusEq(val, r2); Kernel.PlusEq(x, val); } while (x >= n) Kernel.MinusEq(x, n); }
/// <summary> /// Performs n / d and n % d in one operation. /// </summary> /// <param name="n">A BigInteger, upon exit this will hold n / d</param> /// <param name="d">The divisor</param> /// <returns>n % d</returns> public static uint SingleByteDivideInPlace(BigInteger n, uint d) { ulong r = 0; uint i = n.length; while (i-- > 0) { r <<= 32; r |= n.data[i]; n.data[i] = (uint)(r / d); r %= d; } n.Normalize(); return (uint)r; }