values() public method

public values ( Vector x ) : Vector
x Vector
return Vector
Example #1
0
File: model.cs Project: qed-/qlnet
        //! Calibrate to a set of market instruments (caps/swaptions)

        /*! An additional constraint can be passed which must be
         *  satisfied in addition to the constraints of the model.
         */
        //public void calibrate(List<CalibrationHelper> instruments, OptimizationMethod method, EndCriteria endCriteria,
        //           Constraint constraint = new Constraint(), List<double> weights = new List<double>()) {
        public void calibrate(List <CalibrationHelper> instruments, OptimizationMethod method, EndCriteria endCriteria,
                              Constraint additionalConstraint, List <double> weights)
        {
            if (!(weights.Count == 0 || weights.Count == instruments.Count))
            {
                throw new ApplicationException("mismatch between number of instruments and weights");
            }

            Constraint c;

            if (additionalConstraint.empty())
            {
                c = constraint_;
            }
            else
            {
                c = new CompositeConstraint(constraint_, additionalConstraint);
            }
            List <double>       w = weights.Count == 0 ? new InitializedList <double>(instruments.Count, 1.0): weights;
            CalibrationFunction f = new CalibrationFunction(this, instruments, w);

            Problem prob = new Problem(f, c, parameters());

            shortRateEndCriteria_ = method.minimize(prob, endCriteria);
            Vector result = new Vector(prob.currentValue());

            setParams(result);
            // recheck
            Vector shortRateProblemValues_ = prob.values(result);

            notifyObservers();
        }
Example #2
0
File: model.cs Project: cub-/qlnet
        //! Calibrate to a set of market instruments (caps/swaptions)

        /*! An additional constraint can be passed which must be
         *  satisfied in addition to the constraints of the model.
         */
        //public void calibrate(List<CalibrationHelper> instruments, OptimizationMethod method, EndCriteria endCriteria,
        //           Constraint constraint = new Constraint(), List<double> weights = new List<double>()) {
        public void calibrate(List <CalibrationHelper> instruments,
                              OptimizationMethod method,
                              EndCriteria endCriteria,
                              Constraint additionalConstraint = null,
                              List <double> weights           = null,
                              List <bool> fixParameters       = null)
        {
            if (weights == null)
            {
                weights = new List <double>();
            }
            if (additionalConstraint == null)
            {
                additionalConstraint = new Constraint();
            }
            Utils.QL_REQUIRE(weights.empty() || weights.Count == instruments.Count, () =>
                             "mismatch between number of instruments (" +
                             instruments.Count + ") and weights(" +
                             weights.Count + ")");

            Constraint c;

            if (additionalConstraint.empty())
            {
                c = constraint_;
            }
            else
            {
                c = new CompositeConstraint(constraint_, additionalConstraint);
            }
            List <double> w = weights.Count == 0 ? new InitializedList <double>(instruments.Count, 1.0): weights;

            Vector              prms = parameters();
            List <bool>         all  = new InitializedList <bool>(prms.size(), false);
            Projection          proj = new Projection(prms, fixParameters ?? all);
            CalibrationFunction f    = new CalibrationFunction(this, instruments, w, proj);
            ProjectedConstraint pc   = new ProjectedConstraint(c, proj);
            Problem             prob = new Problem(f, pc, proj.project(prms));

            shortRateEndCriteria_ = method.minimize(prob, endCriteria);
            Vector result = new Vector(prob.currentValue());

            setParams(proj.include(result));
            Vector shortRateProblemValues_ = prob.values(result);

            notifyObservers();

            //CalibrationFunction f = new CalibrationFunction(this, instruments, w);

            //Problem prob = new Problem(f, c, parameters());
            //shortRateEndCriteria_ = method.minimize(prob, endCriteria);
            //Vector result = new Vector(prob.currentValue());
            //setParams(result);
            //// recheck
            //Vector shortRateProblemValues_ = prob.values(result);

            //notifyObservers();
        }
Example #3
0
        public Vector fcn(int m, int n, Vector x, int iflag)
        {
            Vector xt = new Vector(x);
            Vector fvec;

            // constraint handling needs some improvement in the future:
            // starting point should not be close to a constraint violation
            if (currentProblem_.constraint().test(xt))
            {
                fvec = new Vector(currentProblem_.values(xt));
            }
            else
            {
                fvec = new Vector(initCostValues_);
            }
            return(fvec);
        }
Example #4
0
        //! Calibrate to a set of market instruments (caps/swaptions)
        /*! An additional constraint can be passed which must be
            satisfied in addition to the constraints of the model.
        */
        //public void calibrate(List<CalibrationHelper> instruments, OptimizationMethod method, EndCriteria endCriteria,
        //           Constraint constraint = new Constraint(), List<double> weights = new List<double>()) {
        public void calibrate(List<CalibrationHelper> instruments, OptimizationMethod method, EndCriteria endCriteria,
            Constraint additionalConstraint, List<double> weights)
        {
            if (!(weights.Count == 0 || weights.Count == instruments.Count))
                throw new ApplicationException("mismatch between number of instruments and weights");

            Constraint c;
            if (additionalConstraint.empty())
                c = constraint_;
            else
                c = new CompositeConstraint(constraint_,additionalConstraint);
            List<double> w = weights.Count == 0 ? new InitializedList<double>(instruments.Count, 1.0): weights;
            CalibrationFunction f = new CalibrationFunction(this, instruments, w);

            Problem prob = new Problem(f, c, parameters());
            shortRateEndCriteria_ = method.minimize(prob, endCriteria);
            Vector result = new Vector(prob.currentValue());
            setParams(result);
            // recheck
            Vector shortRateProblemValues_ = prob.values(result);

            notifyObservers();
        }
Example #5
0
        public void OptimizersTest()
        {
            //("Testing optimizers...");

            setup();

            // Loop over problems (currently there is only 1 problem)
            for (int i=0; i<costFunctions_.Count; ++i) {
                Problem problem = new Problem(costFunctions_[i], constraints_[i], initialValues_[i]);
                Vector initialValues = problem.currentValue();
                // Loop over optimizers
                for (int j = 0; j < (optimizationMethods_[i]).Count; ++j) {
                    double rootEpsilon = endCriterias_[i].rootEpsilon();
                    int endCriteriaTests = 1;
                   // Loop over rootEpsilon
                    for(int k=0; k<endCriteriaTests; ++k) {
                        problem.setCurrentValue(initialValues);
                        EndCriteria endCriteria = new EndCriteria(endCriterias_[i].maxIterations(),
                                                                  endCriterias_[i].maxStationaryStateIterations(),
                                                                  rootEpsilon,
                                                                  endCriterias_[i].functionEpsilon(),
                                                                  endCriterias_[i].gradientNormEpsilon());
                        rootEpsilon *= .1;
                        EndCriteria.Type endCriteriaResult =
                            optimizationMethods_[i][j].optimizationMethod.minimize(problem, endCriteria);
                        Vector xMinCalculated = problem.currentValue();
                        Vector yMinCalculated = problem.values(xMinCalculated);
                        // Check optimization results vs known solution
                        if (endCriteriaResult==EndCriteria.Type.None ||
                            endCriteriaResult==EndCriteria.Type.MaxIterations ||
                            endCriteriaResult==EndCriteria.Type.Unknown)
                            Assert.Fail("function evaluations: " + problem.functionEvaluation()  +
                                      " gradient evaluations: " + problem.gradientEvaluation() +
                                      " x expected:           " + xMinExpected_[i] +
                                      " x calculated:         " + xMinCalculated +
                                      " x difference:         " + (xMinExpected_[i]- xMinCalculated) +
                                      " rootEpsilon:          " + endCriteria.rootEpsilon() +
                                      " y expected:           " + yMinExpected_[i] +
                                      " y calculated:         " + yMinCalculated +
                                      " y difference:         " + (yMinExpected_[i]- yMinCalculated) +
                                      " functionEpsilon:      " + endCriteria.functionEpsilon() +
                                      " endCriteriaResult:    " + endCriteriaResult);
                    }
                }
            }
        }