constraint() public method

public constraint ( ) : QLNet.Constraint
return QLNet.Constraint
Example #1
0
        public override EndCriteria.Type minimize(Problem P, EndCriteria endCriteria)
        {
            EndCriteria.Type ecType = EndCriteria.Type.None;

            upperBound_         = P.constraint().upperBound(P.currentValue());
            lowerBound_         = P.constraint().lowerBound(P.currentValue());
            currGenSizeWeights_ = new Vector(configuration().populationMembers,
                                             configuration().stepsizeWeight);
            currGenCrossover_ = new Vector(configuration().populationMembers,
                                           configuration().crossoverProbability);

            List <Candidate> population = new InitializedList <Candidate>(configuration().populationMembers);

            population.ForEach((ii, vv) => population[ii] = new Candidate(P.currentValue().size()));

            fillInitialPopulation(population, P);

            //original quantlib use partial_sort as only first elements is needed
            double fxOld = population.Min(x => x.cost);

            bestMemberEver_ = (Candidate)population.First(x => x.cost.IsEqual(fxOld)).Clone();
            int iteration = 0, stationaryPointIteration = 0;

            // main loop - calculate consecutive emerging populations
            while (!endCriteria.checkMaxIterations(iteration++, ref ecType))
            {
                calculateNextGeneration(population, P.costFunction());

                double    fxNew = population.Min(x => x.cost);
                Candidate tmp   = (Candidate)population.First(x => x.cost.IsEqual(fxNew)).Clone();

                if (fxNew < bestMemberEver_.cost)
                {
                    bestMemberEver_ = tmp;
                }

                if (endCriteria.checkStationaryFunctionValue(fxOld, fxNew, ref stationaryPointIteration,
                                                             ref ecType))
                {
                    break;
                }
                fxOld = fxNew;
            }

            P.setCurrentValue(bestMemberEver_.values);
            P.setFunctionValue(bestMemberEver_.cost);
            return(ecType);
        }
Example #2
0
        private double extrapolate(ref Problem P, int iHighest, ref double factor)
        {
            Vector pTry;

            do
            {
                int    dimensions = values_.Count - 1;
                double factor1    = (1.0 - factor) / dimensions;
                double factor2    = factor1 - factor;
                pTry    = sum_ * factor1 - vertices_[iHighest] * factor2;
                factor *= 0.5;
            }while (!P.constraint().test(pTry) && Math.Abs(factor) > Const.QL_EPSILON);
            if (Math.Abs(factor) <= Const.QL_EPSILON)
            {
                return(values_[iHighest]);
            }
            factor *= 2.0;
            double vTry = P.value(pTry);

            if (vTry < values_[iHighest])
            {
                values_[iHighest] = vTry;
                sum_ += pTry - vertices_[iHighest];
                vertices_[iHighest] = pTry;
            }
            return(vTry);
        }
Example #3
0
        //! Perform line search
        public override double value(Problem P, ref EndCriteria.Type ecType, EndCriteria endCriteria, double t_ini)
        {
            //OptimizationMethod& method = P.method();
            Constraint constraint = P.constraint();

            succeed_ = true;
            bool   maxIter = false;
            double qtold;
            double t          = t_ini;
            int    loopNumber = 0;

            double q0  = P.functionValue();
            double qp0 = P.gradientNormValue();

            qt_  = q0;
            qpt_ = (gradient_.Count == 0) ? qp0 : -Vector.DotProduct(gradient_, searchDirection_);

            // Initialize gradient
            gradient_ = new Vector(P.currentValue().Count);
            // Compute new point
            xtd_ = (Vector)P.currentValue().Clone();
            t    = update(ref xtd_, searchDirection_, t, constraint);
            // Compute function value at the new point
            qt_ = P.value(xtd_);

            // Enter in the loop if the criterion is not satisfied
            if ((qt_ - q0) > -alpha_ * t * qpt_)
            {
                do
                {
                    loopNumber++;
                    // Decrease step
                    t *= beta_;
                    // Store old value of the function
                    qtold = qt_;
                    // New point value
                    xtd_ = P.currentValue();
                    t    = update(ref xtd_, searchDirection_, t, constraint);

                    // Compute function value at the new point
                    qt_ = P.value(xtd_);
                    P.gradient(gradient_, xtd_);
                    // and it squared norm
                    maxIter = endCriteria.checkMaxIterations(loopNumber, ref ecType);
                } while ((((qt_ - q0) > (-alpha_ * t * qpt_)) || ((qtold - q0) <= (-alpha_ * t * qpt_ / beta_))) && (!maxIter));
            }

            if (maxIter)
            {
                succeed_ = false;
            }

            // Compute new gradient
            P.gradient(gradient_, xtd_);
            // and it squared norm
            qpt_ = Vector.DotProduct(gradient_, gradient_);

            // Return new step value
            return(t);
        }
Example #4
0
        public Vector fcn(int m, int n, Vector x, int iflag)
        {
            Vector xt = new Vector(x);
            Vector fvec;

            // constraint handling needs some improvement in the future:
            // starting point should not be close to a constraint violation
            if (currentProblem_.constraint().test(xt))
            {
                fvec = new Vector(currentProblem_.values(xt));
            }
            else
            {
                fvec = new Vector(initCostValues_);
            }
            return(fvec);
        }
Example #5
0
        //! Perform line search
        public override double value(Problem P, ref EndCriteria.Type ecType, EndCriteria endCriteria, double t_ini) {
            //OptimizationMethod& method = P.method();
            Constraint constraint = P.constraint();
            succeed_ = true;
            bool maxIter = false;
            double qtold;
            double t = t_ini;
            int loopNumber = 0;

            double q0 = P.functionValue();
            double qp0 = P.gradientNormValue();

            qt_ = q0;
            qpt_ = (gradient_.Count == 0) ? qp0 : -Vector.DotProduct(gradient_, searchDirection_);

            // Initialize gradient
            gradient_ = new Vector(P.currentValue().Count);
            // Compute new point
            xtd_ = (Vector)P.currentValue().Clone();
            t = update(ref xtd_, searchDirection_, t, constraint);
            // Compute function value at the new point
            qt_ = P.value(xtd_);

            // Enter in the loop if the criterion is not satisfied
            if ((qt_ - q0) > -alpha_ * t * qpt_) {
                do {
                    loopNumber++;
                    // Decrease step
                    t *= beta_;
                    // Store old value of the function
                    qtold = qt_;
                    // New point value
                    xtd_ = P.currentValue();
                    t = update(ref xtd_, searchDirection_, t, constraint);

                    // Compute function value at the new point
                    qt_ = P.value(xtd_);
                    P.gradient(gradient_, xtd_);
                    // and it squared norm
                    maxIter = endCriteria.checkMaxIterations(loopNumber, ref ecType);
                } while ((((qt_ - q0) > (-alpha_ * t * qpt_)) || ((qtold - q0) <= (-alpha_ * t * qpt_ / beta_))) && (!maxIter));
            }

            if (maxIter)
                succeed_ = false;

            // Compute new gradient
            P.gradient(gradient_, xtd_);
            // and it squared norm
            qpt_ = Vector.DotProduct(gradient_, gradient_);

            // Return new step value
            return t;
        }
Example #6
0
        protected void amotsa(Problem P, double fac)
        {
            fac1_ = (1.0 - fac) / Convert.ToDouble(n_);
            fac2_ = fac1_ - fac;
            for (j_ = 0; j_ < n_; j_++)
            {
                ptry_[j_] = sum_[j_] * fac1_ - vertices_[ihi_][j_] * fac2_;
            }

            if (!P.constraint().test(ptry_))
            {
                ytry_ = Double.MaxValue;
            }
            else
            {
                ytry_ = P.value(ptry_);
            }
            if (Double.IsNaN(ytry_))
            {
                ytry_ = Double.MaxValue;
            }

            if (ytry_ <= yb_)
            {
                yb_ = ytry_;
                pb_ = ptry_;
            }

            yflu_ = ytry_ - tt_ * Math.Log(rng_.next().value);
            if (yflu_ < yhi_)
            {
                values_[ihi_] = ytry_;
                yhi_          = yflu_;
                for (j_ = 0; j_ < n_; j_++)
                {
                    sum_[j_]           += ptry_[j_] - vertices_[ihi_][j_];
                    vertices_[ihi_][j_] = ptry_[j_];
                }
            }

            ytry_ = yflu_;
        }
Example #7
0
        private double extrapolate(ref Problem P, int iHighest, ref double factor)
        {
            Vector pTry;

            do
            {
                int    dimensions = values_.Count - 1;
                double factor1    = (1.0 - factor) / dimensions;
                double factor2    = factor1 - factor;
                // #if QL_ARRAY_EXPRESSIONS
                pTry = sum_ * factor1 - vertices_[iHighest] * factor2;
                //#else
                //                    // composite expressions fail to compile with gcc 3.4 on windows
                //                    pTry = sum_ * factor1;
                //                    pTry -= vertices_[iHighest] * factor2;
                //#endif
                factor *= 0.5;
            } while (!P.constraint().test(pTry) && Math.Abs(factor) > Const.QL_EPSILON);
            if (Math.Abs(factor) <= Const.QL_EPSILON)
            {
                return(values_[iHighest]);
            }
            factor *= 2.0;
            double vTry = P.value(pTry);

            if (vTry < values_[iHighest])
            {
                values_[iHighest] = vTry;
                //#if QL_ARRAY_EXPRESSIONS
                sum_ += pTry - vertices_[iHighest];
                //#else
                //                    sum_ += pTry;
                //                    sum_ -= vertices_[iHighest];
                //#endif
                vertices_[iHighest] = pTry;
            }
            return(vTry);
        }
Example #8
0
        public override EndCriteria.Type minimize(Problem P, EndCriteria endCriteria)
        {
            // set up of the problem
            //double ftol = endCriteria.functionEpsilon();    // end criteria on f(x) (see Numerical Recipes in C++, p.410)
            double xtol = endCriteria.rootEpsilon(); // end criteria on x (see GSL v. 1.9, http://www.gnu.org/software/gsl/)
            int    maxStationaryStateIterations_ = endCriteria.maxStationaryStateIterations();

            EndCriteria.Type ecType = EndCriteria.Type.None;
            P.reset();
            Vector x_ = P.currentValue();
            int    iterationNumber_ = 0;

            // Initialize vertices of the simplex
            bool end = false;
            int  n   = x_.Count;

            vertices_ = new InitializedList <Vector>(n + 1, x_);
            for (int i = 0; i < n; i++)
            {
                Vector direction = new Vector(n, 0.0);
                Vector vertice   = vertices_[i + 1];
                direction[i] = 1.0;
                P.constraint().update(ref vertice, direction, lambda_);
                vertices_[i + 1] = vertice;
            }
            // Initialize function values at the vertices of the simplex
            values_ = new Vector(n + 1, 0.0);
            for (int i = 0; i <= n; i++)
            {
                values_[i] = P.value(vertices_[i]);
            }
            // Loop looking for minimum
            do
            {
                sum_ = new Vector(n, 0.0);
                for (int i = 0; i <= n; i++)
                {
                    sum_ += vertices_[i];
                }
                // Determine the best (iLowest), worst (iHighest)
                // and 2nd worst (iNextHighest) vertices
                int iLowest = 0;
                int iHighest;
                int iNextHighest;
                if (values_[0] < values_[1])
                {
                    iHighest     = 1;
                    iNextHighest = 0;
                }
                else
                {
                    iHighest     = 0;
                    iNextHighest = 1;
                }
                for (int i = 1; i <= n; i++)
                {
                    if (values_[i] > values_[iHighest])
                    {
                        iNextHighest = iHighest;
                        iHighest     = i;
                    }
                    else
                    {
                        if ((values_[i] > values_[iNextHighest]) && i != iHighest)
                        {
                            iNextHighest = i;
                        }
                    }
                    if (values_[i] < values_[iLowest])
                    {
                        iLowest = i;
                    }
                }
                // Now compute accuracy, update iteration number and check end criteria
                //// Numerical Recipes exit strategy on fx (see NR in C++, p.410)
                //double low = values_[iLowest];
                //double high = values_[iHighest];
                //double rtol = 2.0*std::fabs(high - low)/
                //    (std::fabs(high) + std::fabs(low) + QL_EPSILON);
                //++iterationNumber_;
                //if (rtol < ftol ||
                //    endCriteria.checkMaxIterations(iterationNumber_, ecType)) {
                // GSL exit strategy on x (see GSL v. 1.9, http://www.gnu.org/software/gsl
                double simplexSize = Utils.computeSimplexSize(vertices_);
                ++iterationNumber_;
                if (simplexSize < xtol || endCriteria.checkMaxIterations(iterationNumber_, ref ecType))
                {
                    endCriteria.checkStationaryPoint(0.0, 0.0, ref maxStationaryStateIterations_, ref ecType);
                    endCriteria.checkMaxIterations(iterationNumber_, ref ecType);
                    x_ = vertices_[iLowest];
                    double low = values_[iLowest];
                    P.setFunctionValue(low);
                    P.setCurrentValue(x_);
                    return(ecType);
                }
                // If end criteria is not met, continue
                double factor = -1.0;
                double vTry   = extrapolate(ref P, iHighest, ref factor);
                if ((vTry <= values_[iLowest]) && (factor == -1.0))
                {
                    factor = 2.0;
                    extrapolate(ref P, iHighest, ref factor);
                }
                else if (Math.Abs(factor) > Const.QL_EPSILON)
                {
                    if (vTry >= values_[iNextHighest])
                    {
                        double vSave = values_[iHighest];
                        factor = 0.5;
                        vTry   = extrapolate(ref P, iHighest, ref factor);
                        if (vTry >= vSave && Math.Abs(factor) > Const.QL_EPSILON)
                        {
                            for (int i = 0; i <= n; i++)
                            {
                                if (i != iLowest)
                                {
#if QL_ARRAY_EXPRESSIONS
                                    vertices_[i] = 0.5 * (vertices_[i] + vertices_[iLowest]);
#else
                                    vertices_[i] += vertices_[iLowest];
                                    vertices_[i] *= 0.5;
#endif
                                    values_[i] = P.value(vertices_[i]);
                                }
                            }
                        }
                    }
                }
                // If can't extrapolate given the constraints, exit
                if (Math.Abs(factor) <= Const.QL_EPSILON)
                {
                    x_ = vertices_[iLowest];
                    double low = values_[iLowest];
                    P.setFunctionValue(low);
                    P.setCurrentValue(x_);
                    return(EndCriteria.Type.StationaryFunctionValue);
                }
            } while (end == false);
            throw new Exception("optimization failed: unexpected behaviour");
        }
Example #9
0
File: Simplex.cs Project: vdt/QLNet
        public override EndCriteria.Type minimize(Problem P, EndCriteria endCriteria)
        {
            // set up of the problem
            //double ftol = endCriteria.functionEpsilon();    // end criteria on f(x) (see Numerical Recipes in C++, p.410)
            double xtol = endCriteria.rootEpsilon(); // end criteria on x (see GSL v. 1.9, http://www.gnu.org/software/gsl/)
            int maxStationaryStateIterations_ = endCriteria.maxStationaryStateIterations();
            EndCriteria.Type ecType = EndCriteria.Type.None;
            P.reset();
            Vector x_ = P.currentValue();
            int iterationNumber_ = 0;

            // Initialize vertices of the simplex
            bool end = false;
            int n = x_.Count;
            vertices_ = new InitializedList<Vector>(n + 1, x_);
            for (int i = 0; i < n; i++)
            {
                Vector direction = new Vector(n, 0.0);
                direction[i] = 1.0;
                P.constraint().update(vertices_[i + 1], direction, lambda_);
            }
            // Initialize function values at the vertices of the simplex
            values_ = new Vector(n + 1, 0.0);
            for (int i = 0; i <= n; i++)
                values_[i] = P.value(vertices_[i]);
            // Loop looking for minimum
            do
            {
                sum_ = new Vector(n, 0.0);
                for (int i = 0; i <= n; i++)
                    sum_ += vertices_[i];
                // Determine the best (iLowest), worst (iHighest)
                // and 2nd worst (iNextHighest) vertices
                int iLowest = 0;
                int iHighest;
                int iNextHighest;
                if (values_[0] < values_[1])
                {
                    iHighest = 1;
                    iNextHighest = 0;
                }
                else
                {
                    iHighest = 0;
                    iNextHighest = 1;
                }
                for (int i = 1; i <= n; i++)
                {
                    if (values_[i] > values_[iHighest])
                    {
                        iNextHighest = iHighest;
                        iHighest = i;
                    }
                    else
                    {
                        if ((values_[i] > values_[iNextHighest]) && i != iHighest)
                            iNextHighest = i;
                    }
                    if (values_[i] < values_[iLowest])
                        iLowest = i;
                }
                // Now compute accuracy, update iteration number and check end criteria
                //// Numerical Recipes exit strategy on fx (see NR in C++, p.410)
                //double low = values_[iLowest];
                //double high = values_[iHighest];
                //double rtol = 2.0*std::fabs(high - low)/
                //    (std::fabs(high) + std::fabs(low) + QL_EPSILON);
                //++iterationNumber_;
                //if (rtol < ftol ||
                //    endCriteria.checkMaxIterations(iterationNumber_, ecType)) {
                // GSL exit strategy on x (see GSL v. 1.9, http://www.gnu.org/software/gsl
                double simplexSize = Utils.computeSimplexSize(vertices_);
                ++iterationNumber_;
                if (simplexSize < xtol || endCriteria.checkMaxIterations(iterationNumber_, ref ecType))
                {
                    endCriteria.checkStationaryPoint(0.0, 0.0, ref maxStationaryStateIterations_, ref ecType);
                    endCriteria.checkMaxIterations(iterationNumber_, ref ecType);
                    x_ = vertices_[iLowest];
                    double low = values_[iLowest];
                    P.setFunctionValue(low);
                    P.setCurrentValue(x_);
                    return ecType;
                }
                // If end criteria is not met, continue
                double factor = -1.0;
                double vTry = extrapolate(ref P, iHighest, ref factor);
                if ((vTry <= values_[iLowest]) && (factor == -1.0))
                {
                    factor = 2.0;
                    extrapolate(ref P, iHighest, ref factor);
                }
                else if (Math.Abs(factor) > Const.QL_Epsilon)
                {
                    if (vTry >= values_[iNextHighest])
                    {
                        double vSave = values_[iHighest];
                        factor = 0.5;
                        vTry = extrapolate(ref P, iHighest, ref factor);
                        if (vTry >= vSave && Math.Abs(factor) > Const.QL_Epsilon)
                        {
                            for (int i = 0; i <= n; i++)
                            {
                                if (i != iLowest)
                                {
            #if QL_ARRAY_EXPRESSIONS
                                    vertices_[i] = 0.5 * (vertices_[i] + vertices_[iLowest]);
            #else
                                    vertices_[i] += vertices_[iLowest];
                                    vertices_[i] *= 0.5;
            #endif
                                    values_[i] = P.value(vertices_[i]);
                                }
                            }
                        }
                    }
                }
                // If can't extrapolate given the constraints, exit
                if (Math.Abs(factor) <= Const.QL_Epsilon)
                {
                    x_ = vertices_[iLowest];
                    double low = values_[iLowest];
                    P.setFunctionValue(low);
                    P.setCurrentValue(x_);
                    return EndCriteria.Type.StationaryFunctionValue;
                }
            } while (end == false);
            throw new ApplicationException("optimization failed: unexpected behaviour");
        }
Example #10
0
File: Simplex.cs Project: vdt/QLNet
 private double extrapolate(ref Problem P, int iHighest, ref double factor)
 {
     Vector pTry;
     do
     {
         int dimensions = values_.Count - 1;
         double factor1 = (1.0 - factor) / dimensions;
         double factor2 = factor1 - factor;
         // #if QL_ARRAY_EXPRESSIONS
         pTry = sum_ * factor1 - vertices_[iHighest] * factor2;
         //#else
         //                    // composite expressions fail to compile with gcc 3.4 on windows
         //                    pTry = sum_ * factor1;
         //                    pTry -= vertices_[iHighest] * factor2;
         //#endif
         factor *= 0.5;
     } while (!P.constraint().test(pTry) && Math.Abs(factor) > Const.QL_Epsilon);
     if (Math.Abs(factor) <= Const.QL_Epsilon)
     {
         return values_[iHighest];
     }
     factor *= 2.0;
     double vTry = P.value(pTry);
     if (vTry < values_[iHighest])
     {
         values_[iHighest] = vTry;
         //#if QL_ARRAY_EXPRESSIONS
         sum_ += pTry - vertices_[iHighest];
         //#else
         //                    sum_ += pTry;
         //                    sum_ -= vertices_[iHighest];
         //#endif
         vertices_[iHighest] = pTry;
     }
     return vTry;
 }
Example #11
0
        public override EndCriteria.Type minimize(Problem P, EndCriteria endCriteria)
        {
            int stationaryStateIterations_ = 0;

            EndCriteria.Type ecType = EndCriteria.Type.None;
            P.reset();
            Vector x = P.currentValue();

            iteration_ = 0;
            n_         = x.size();
            ptry_      = new Vector(n_, 0.0);

            // build vertices

            vertices_ = new InitializedList <Vector>(n_ + 1, x);
            for (i_ = 0; i_ < n_; i_++)
            {
                Vector direction = new Vector(n_, 0.0);
                direction[i_] = 1.0;
                Vector tmp = vertices_[i_ + 1];
                P.constraint().update(ref tmp, direction, lambda_);
                vertices_[i_ + 1] = tmp;
            }

            values_ = new Vector(n_ + 1, 0.0);
            for (i_ = 0; i_ <= n_; i_++)
            {
                if (!P.constraint().test(vertices_[i_]))
                {
                    values_[i_] = Double.MaxValue;
                }
                else
                {
                    values_[i_] = P.value(vertices_[i_]);
                }
                if (Double.IsNaN(ytry_))
                {
                    // handle NAN
                    values_[i_] = Double.MaxValue;
                }
            }

            // minimize

            T_  = T0_;
            yb_ = Double.MaxValue;
            pb_ = new Vector(n_, 0.0);
            do
            {
                iterationT_ = iteration_;
                do
                {
                    sum_ = new Vector(n_, 0.0);
                    for (i_ = 0; i_ <= n_; i_++)
                    {
                        sum_ += vertices_[i_];
                    }
                    tt_   = -T_;
                    ilo_  = 0;
                    ihi_  = 1;
                    ynhi_ = values_[0] + tt_ * Math.Log(rng_.next().value);
                    ylo_  = ynhi_;
                    yhi_  = values_[1] + tt_ * Math.Log(rng_.next().value);
                    if (ylo_ > yhi_)
                    {
                        ihi_  = 0;
                        ilo_  = 1;
                        ynhi_ = yhi_;
                        yhi_  = ylo_;
                        ylo_  = ynhi_;
                    }

                    for (i_ = 2; i_ < n_ + 1; i_++)
                    {
                        yt_ = values_[i_] + tt_ * Math.Log(rng_.next().value);
                        if (yt_ <= ylo_)
                        {
                            ilo_ = i_;
                            ylo_ = yt_;
                        }

                        if (yt_ > yhi_)
                        {
                            ynhi_ = yhi_;
                            ihi_  = i_;
                            yhi_  = yt_;
                        }
                        else
                        {
                            if (yt_ > ynhi_)
                            {
                                ynhi_ = yt_;
                            }
                        }
                    }

                    // GSL end criterion in x (cf. above)
                    if (endCriteria.checkStationaryPoint(simplexSize(), 0.0,
                                                         ref stationaryStateIterations_,
                                                         ref ecType) ||
                        endCriteria.checkMaxIterations(iteration_, ref ecType))
                    {
                        // no matter what, we return the best ever point !
                        P.setCurrentValue(pb_);
                        P.setFunctionValue(yb_);
                        return(ecType);
                    }

                    iteration_ += 2;
                    amotsa(P, -1.0);
                    if (ytry_ <= ylo_)
                    {
                        amotsa(P, 2.0);
                    }
                    else
                    {
                        if (ytry_ >= ynhi_)
                        {
                            ysave_ = yhi_;
                            amotsa(P, 0.5);
                            if (ytry_ >= ysave_)
                            {
                                for (i_ = 0; i_ < n_ + 1; i_++)
                                {
                                    if (i_ != ilo_)
                                    {
                                        for (j_ = 0; j_ < n_; j_++)
                                        {
                                            sum_[j_] = 0.5 * (vertices_[i_][j_] +
                                                              vertices_[ilo_][j_]);
                                            vertices_[i_][j_] = sum_[j_];
                                        }

                                        values_[i_] = P.value(sum_);
                                    }
                                }

                                iteration_ += n_;
                                for (i_ = 0; i_ < n_; i_++)
                                {
                                    sum_[i_] = 0.0;
                                }
                                for (i_ = 0; i_ <= n_; i_++)
                                {
                                    sum_ += vertices_[i_];
                                }
                            }
                        }
                        else
                        {
                            iteration_ += 1;
                        }
                    }
                }while (iteration_ <
                        iterationT_ + (scheme_ == Scheme.ConstantFactor ? m_ : 1));

                switch (scheme_)
                {
                case Scheme.ConstantFactor:
                    T_ *= (1.0 - epsilon_);
                    break;

                case Scheme.ConstantBudget:
                    if (iteration_ <= K_)
                    {
                        T_ = T0_ *
                             Math.Pow(1.0 - Convert.ToDouble(iteration_) / Convert.ToDouble(K_), alpha_);
                    }
                    else
                    {
                        T_ = 0.0;
                    }
                    break;
                }
            }while (true);
        }