Example #1
0
        /// <summary>
        /// Construct one Huffman tree and assigns the code bit strings and lengths. Update the total bit length for the current block.
        /// </summary>
        /// <param name="s">The s.</param>
        public void BuildTree(Deflate s)
        {
            short[] tree = _dynamicTree;
            short[] stree = _staticTree.TreeData;
            int elems = _staticTree.Elements;
            int n, m;          // iterate over heap elements
            int max_code = -1;   // largest code with non zero frequency
            int node;          // new node being created

            // Construct the initial heap, with least frequent element in
            // heap[1]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
            // heap[0] is not used.
            s.heap_len = 0;
            s.heap_max = HEAP_SIZE;

            for (n = 0; n < elems; n++)
            {
                if (tree[n * 2] != 0)
                {
                    s.heap[++s.heap_len] = max_code = n;
                    s.depth[n] = 0;
                }
                else
                {
                    tree[n * 2 + 1] = 0;
                }
            }

            // The pkzip format requires that at least one distance code exists,
            // and that at least one bit should be sent even if there is only one
            // possible code. So to avoid special checks later on we force at least
            // two codes of non zero frequency.
            while (s.heap_len < 2)
            {
                node = s.heap[++s.heap_len] = (max_code < 2 ? ++max_code : 0);
                tree[node * 2] = 1;
                s.depth[node] = 0;
                s.opt_len--; if (stree != null) s.static_len -= stree[node * 2 + 1];
                // node is 0 or 1 so it does not have extra bits
            }
            this.LargestCode = max_code;

            // The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
            // establish sub-heaps of increasing lengths:

            for (n = s.heap_len / 2; n >= 1; n--)
                s.RestoreHeap(tree, n);

            // Construct the Huffman tree by repeatedly combining the least two
            // frequent nodes.

            node = elems;                 // next internal node of the tree
            do
            {
                // n = node of least frequency
                n = s.heap[1];
                s.heap[1] = s.heap[s.heap_len--];
                s.RestoreHeap(tree, 1);
                m = s.heap[1];                // m = node of next least frequency

                s.heap[--s.heap_max] = n; // keep the nodes sorted by frequency
                s.heap[--s.heap_max] = m;

                // Create a new node father of n and m
                tree[node * 2] = (short)(tree[n * 2] + tree[m * 2]);
                s.depth[node] = (byte)(System.Math.Max(s.depth[n], s.depth[m]) + 1);
                tree[n * 2 + 1] = tree[m * 2 + 1] = (short)node;

                // and insert the new node in the heap
                s.heap[1] = node++;
                s.RestoreHeap(tree, 1);
            }
            while (s.heap_len >= 2);

            s.heap[--s.heap_max] = s.heap[1];

            // At this point, the fields freq and dad are set. We can now
            // generate the bit lengths.

            ComputeBitLength(s);

            // The field len is now set, we can generate the bit codes
            GenerateCodes(tree, max_code, s.bl_count);
        }
Example #2
0
        /// <summary>
        /// Construct one Huffman tree and assigns the code bit strings and lengths. Update the total bit length for the current block.
        /// </summary>
        /// <param name="s">The s.</param>
        public void BuildTree(Deflate s)
        {
            short[] tree = _dynamicTree;
            short[] stree = _staticTree.TreeData;
            int     elems = _staticTree.Elements;
            int     n, m;          // iterate over heap elements
            int     max_code = -1; // largest code with non zero frequency
            int     node;          // new node being created

            // Construct the initial heap, with least frequent element in
            // heap[1]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
            // heap[0] is not used.
            s.heap_len = 0;
            s.heap_max = HEAP_SIZE;

            for (n = 0; n < elems; n++)
            {
                if (tree[n * 2] != 0)
                {
                    s.heap[++s.heap_len] = max_code = n;
                    s.depth[n]           = 0;
                }
                else
                {
                    tree[n * 2 + 1] = 0;
                }
            }

            // The pkzip format requires that at least one distance code exists,
            // and that at least one bit should be sent even if there is only one
            // possible code. So to avoid special checks later on we force at least
            // two codes of non zero frequency.
            while (s.heap_len < 2)
            {
                node           = s.heap[++s.heap_len] = (max_code < 2 ? ++max_code : 0);
                tree[node * 2] = 1;
                s.depth[node]  = 0;
                s.opt_len--; if (stree != null)
                {
                    s.static_len -= stree[node * 2 + 1];
                }
                // node is 0 or 1 so it does not have extra bits
            }
            this.LargestCode = max_code;

            // The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
            // establish sub-heaps of increasing lengths:

            for (n = s.heap_len / 2; n >= 1; n--)
            {
                s.RestoreHeap(tree, n);
            }

            // Construct the Huffman tree by repeatedly combining the least two
            // frequent nodes.

            node = elems;                 // next internal node of the tree
            do
            {
                // n = node of least frequency
                n         = s.heap[1];
                s.heap[1] = s.heap[s.heap_len--];
                s.RestoreHeap(tree, 1);
                m = s.heap[1];            // m = node of next least frequency

                s.heap[--s.heap_max] = n; // keep the nodes sorted by frequency
                s.heap[--s.heap_max] = m;

                // Create a new node father of n and m
                tree[node * 2]  = (short)(tree[n * 2] + tree[m * 2]);
                s.depth[node]   = (byte)(System.Math.Max(s.depth[n], s.depth[m]) + 1);
                tree[n * 2 + 1] = tree[m * 2 + 1] = (short)node;

                // and insert the new node in the heap
                s.heap[1] = node++;
                s.RestoreHeap(tree, 1);
            }while (s.heap_len >= 2);

            s.heap[--s.heap_max] = s.heap[1];

            // At this point, the fields freq and dad are set. We can now
            // generate the bit lengths.

            ComputeBitLength(s);

            // The field len is now set, we can generate the bit codes
            GenerateCodes(tree, max_code, s.bl_count);
        }