Inheritance: ZStream, ICompressor
Example #1
0
        public int deflateEnd()
        {
            if (dstate == null)
            {
                return(Z_STREAM_ERROR);
            }
            int ret = dstate.deflateEnd();

            dstate = null;
            return(ret);
        }
Example #2
0
        public int deflateEnd()
        {
            if (this.dstate == null)
            {
                return(-2);
            }
            int num = this.dstate.deflateEnd();

            this.dstate = null;
            return(num);
        }
Example #3
0
        public int deflateEnd()
        {
            if (this.dstate == null)
            {
                return(-2);
            }
            int result = this.dstate.deflateEnd();

            this.dstate = null;
            return(result);
        }
Example #4
0
        public int deflateEnd()
        {
            if (dstate == null)
            {
                return(-2);
            }
            int result = dstate.deflateEnd();

            dstate = null;
            return(result);
        }
Example #5
0
        protected ZLibStatus deflateEnd()
        {
            if (dstate == null)
            {
                return(ZLibStatus.Z_STREAM_ERROR);
            }
            var ret = dstate.deflateEnd();

            dstate = null;
            return(ret);
        }
Example #6
0
        internal void pqdownheap(short[] tree, int k)
        {
            int num = this.heap[k];

            for (int i = k << 1; i <= this.heap_len; i <<= 1)
            {
                if (i < this.heap_len && Deflate.smaller(tree, this.heap[i + 1], this.heap[i], this.depth))
                {
                    i++;
                }
                if (Deflate.smaller(tree, num, this.heap[i], this.depth))
                {
                    break;
                }
                this.heap[k] = this.heap[i];
                k            = i;
            }
            this.heap[k] = num;
        }
 public int deflateEnd(){
     if(dstate==null) return Z_STREAM_ERROR;
     int ret=dstate.deflateEnd();
     dstate=null;
     return ret;
 }
 public int deflateInit(int level, int bits, bool nowrap){
     dstate=new Deflate();
     return dstate.deflateInit(this, level, nowrap?-bits:bits);
 }
Example #9
0
 public int deflateInit(int level, int bits, bool nowrap)
 {
     this.dstate = new Deflate();
     return(this.dstate.deflateInit(this, level, !nowrap ? bits : -bits));
 }
Example #10
0
        internal void gen_bitlen(Deflate s)
        {
            int num4;

            short[] numArray  = this.dyn_tree;
            short[] numArray2 = this.stat_desc.static_tree;
            int[]   numArray3 = this.stat_desc.extra_bits;
            int     num       = this.stat_desc.extra_base;
            int     index     = this.stat_desc.max_length;
            int     num9      = 0;
            int     num6      = 0;

            while (num6 <= 15)
            {
                s.bl_count[num6] = 0;
                num6++;
            }
            numArray[(s.heap[s.heap_max] * 2) + 1] = 0;
            int num3 = s.heap_max + 1;

            while (num3 < 0x23d)
            {
                num4 = s.heap[num3];
                num6 = numArray[(numArray[(num4 * 2) + 1] * 2) + 1] + 1;
                if (num6 > index)
                {
                    num6 = index;
                    num9++;
                }
                numArray[(num4 * 2) + 1] = (short)num6;
                if (num4 <= this.max_code)
                {
                    s.bl_count[num6] = (short)(s.bl_count[num6] + 1);
                    int num7 = 0;
                    if (num4 >= num)
                    {
                        num7 = numArray3[num4 - num];
                    }
                    short num8 = numArray[num4 * 2];
                    s.opt_len += num8 * (num6 + num7);
                    if (numArray2 != null)
                    {
                        s.static_len += num8 * (numArray2[(num4 * 2) + 1] + num7);
                    }
                }
                num3++;
            }
            if (num9 != 0)
            {
                do
                {
                    num6 = index - 1;
                    while (s.bl_count[num6] == 0)
                    {
                        num6--;
                    }
                    s.bl_count[num6]     = (short)(s.bl_count[num6] - 1);
                    s.bl_count[num6 + 1] = (short)(s.bl_count[num6 + 1] + 2);
                    s.bl_count[index]    = (short)(s.bl_count[index] - 1);
                    num9 -= 2;
                }while (num9 > 0);
                for (num6 = index; num6 != 0; num6--)
                {
                    num4 = s.bl_count[num6];
                    while (num4 != 0)
                    {
                        int num5 = s.heap[--num3];
                        if (num5 <= this.max_code)
                        {
                            if (numArray[(num5 * 2) + 1] != num6)
                            {
                                s.opt_len += (num6 - numArray[(num5 * 2) + 1]) * numArray[num5 * 2];
                                numArray[(num5 * 2) + 1] = (short)num6;
                            }
                            num4--;
                        }
                    }
                }
            }
        }
Example #11
0
 public int deflateInit(int level, int bits, bool nowrap)
 {
     dstate = new Deflate();
     return(dstate.deflateInit(this, level, nowrap?-bits:bits));
 }
Example #12
0
        internal void gen_bitlen(Deflate s)
        {
            short[] array       = this.dyn_tree;
            short[] static_tree = this.stat_desc.static_tree;
            int[]   extra_bits  = this.stat_desc.extra_bits;
            int     extra_base  = this.stat_desc.extra_base;
            int     max_length  = this.stat_desc.max_length;
            int     num         = 0;

            for (int i = 0; i <= 15; i++)
            {
                s.bl_count[i] = 0;
            }
            array[s.heap[s.heap_max] * 2 + 1] = 0;
            int j;

            for (j = s.heap_max + 1; j < 573; j++)
            {
                int num2 = s.heap[j];
                int i    = (int)(array[(int)(array[num2 * 2 + 1] * 2 + 1)] + 1);
                if (i > max_length)
                {
                    i = max_length;
                    num++;
                }
                array[num2 * 2 + 1] = (short)i;
                if (num2 <= this.max_code)
                {
                    short[] expr_C8_cp_0 = s.bl_count;
                    int     expr_C8_cp_1 = i;
                    expr_C8_cp_0[expr_C8_cp_1] += 1;
                    int num3 = 0;
                    if (num2 >= extra_base)
                    {
                        num3 = extra_bits[num2 - extra_base];
                    }
                    short num4 = array[num2 * 2];
                    s.opt_len += (int)num4 * (i + num3);
                    if (static_tree != null)
                    {
                        s.static_len += (int)num4 * ((int)static_tree[num2 * 2 + 1] + num3);
                    }
                }
            }
            if (num == 0)
            {
                return;
            }
            do
            {
                int i = max_length - 1;
                while (s.bl_count[i] == 0)
                {
                    i--;
                }
                short[] expr_15E_cp_0 = s.bl_count;
                int     expr_15E_cp_1 = i;
                expr_15E_cp_0[expr_15E_cp_1] -= 1;
                short[] expr_17B_cp_0 = s.bl_count;
                int     expr_17B_cp_1 = i + 1;
                expr_17B_cp_0[expr_17B_cp_1] += 2;
                short[] expr_196_cp_0 = s.bl_count;
                int     expr_196_cp_1 = max_length;
                expr_196_cp_0[expr_196_cp_1] -= 1;
                num -= 2;
            }while (num > 0);
            for (int i = max_length; i != 0; i--)
            {
                int num2 = (int)s.bl_count[i];
                while (num2 != 0)
                {
                    int num5 = s.heap[--j];
                    if (num5 <= this.max_code)
                    {
                        if ((int)array[num5 * 2 + 1] != i)
                        {
                            s.opt_len          += (int)(((long)i - (long)array[num5 * 2 + 1]) * (long)array[num5 * 2]);
                            array[num5 * 2 + 1] = (short)i;
                        }
                        num2--;
                    }
                }
            }
        }
Example #13
0
 protected ZLibStatus deflateInit(CompressionLevel level, int bits, bool nowrap)
 {
     dstate = new Deflate();
     return dstate.deflateInit(this, level, nowrap ? -bits : bits);
 }
Example #14
0
 protected ZLibStatus deflateEnd()
 {
     if (dstate == null) return ZLibStatus.Z_STREAM_ERROR;
     var ret = dstate.deflateEnd();
     dstate = null;
     return ret;
 }
Example #15
0
 protected ZLibStatus deflateInit(CompressionLevel level, int bits, bool nowrap)
 {
     dstate = new Deflate();
     return(dstate.deflateInit(this, level, nowrap ? -bits : bits));
 }
Example #16
0
        internal StaticTree stat_desc;  // the corresponding static tree

        // Compute the optimal bit lengths for a tree and update the total bit length
        // for the current block.
        // IN assertion: the fields freq and dad are set, heap[heap_max] and
        //    above are the tree nodes sorted by increasing frequency.
        // OUT assertions: the field len is set to the optimal bit length, the
        //     array bl_count contains the frequencies for each bit length.
        //     The length opt_len is updated; static_len is also updated if stree is
        //     not null.
        internal void gen_bitlen(Deflate s)
        {
            short[] tree       = dyn_tree;
            short[] stree      = stat_desc.static_tree;
            int[]   extra      = stat_desc.extra_bits;
            int     based      = stat_desc.extra_base;
            int     max_length = stat_desc.max_length;
            int     h;            // heap index
            int     n, m;         // iterate over the tree elements
            int     bits;         // bit length
            int     xbits;        // extra bits
            short   f;            // frequency
            int     overflow = 0; // number of elements with bit length too large

            for (bits = 0; bits <= MAX_BITS; bits++)
            {
                s.bl_count[bits] = 0;
            }

            // In a first pass, compute the optimal bit lengths (which may
            // overflow in the case of the bit length tree).
            tree[s.heap[s.heap_max] * 2 + 1] = 0; // root of the heap

            for (h = s.heap_max + 1; h < HEAP_SIZE; h++)
            {
                n    = s.heap[h];
                bits = tree[tree[n * 2 + 1] * 2 + 1] + 1;
                if (bits > max_length)
                {
                    bits = max_length; overflow++;
                }
                tree[n * 2 + 1] = (short)bits;
                // We overwrite tree[n*2+1] which is no longer needed

                if (n > max_code)
                {
                    continue;                // not a leaf node
                }
                s.bl_count[bits]++;
                xbits = 0;
                if (n >= based)
                {
                    xbits = extra[n - based];
                }
                f          = tree[n * 2];
                s.opt_len += f * (bits + xbits);
                if (stree != null)
                {
                    s.static_len += f * (stree[n * 2 + 1] + xbits);
                }
            }
            if (overflow == 0)
            {
                return;
            }

            // This happens for example on obj2 and pic of the Calgary corpus
            // Find the first bit length which could increase:
            do
            {
                bits = max_length - 1;
                while (s.bl_count[bits] == 0)
                {
                    bits--;
                }
                s.bl_count[bits]--;        // move one leaf down the tree
                s.bl_count[bits + 1] += 2; // move one overflow item as its brother
                s.bl_count[max_length]--;
                // The brother of the overflow item also moves one step up,
                // but this does not affect bl_count[max_length]
                overflow -= 2;
            }while (overflow > 0);

            for (bits = max_length; bits != 0; bits--)
            {
                n = s.bl_count[bits];
                while (n != 0)
                {
                    m = s.heap[--h];
                    if (m > max_code)
                    {
                        continue;
                    }
                    if (tree[m * 2 + 1] != bits)
                    {
                        s.opt_len      += (int)(((long)bits - (long)tree[m * 2 + 1]) * (long)tree[m * 2]);
                        tree[m * 2 + 1] = (short)bits;
                    }
                    n--;
                }
            }
        }
        internal StaticTree stat_desc;  // the corresponding static tree

        // Compute the optimal bit lengths for a tree and update the total bit length
        // for the current block.
        // IN assertion: the fields freq and dad are set, heap[heap_max] and
        //    above are the tree nodes sorted by increasing frequency.
        // OUT assertions: the field len is set to the optimal bit length, the
        //     array bl_count contains the frequencies for each bit length.
        //     The length opt_len is updated; static_len is also updated if stree is
        //     not null.
        internal void gen_bitlen(Deflate s){
            short[] tree = dyn_tree;
            short[] stree = stat_desc.static_tree;
            int[] extra = stat_desc.extra_bits;
            int based = stat_desc.extra_base;
            int max_length = stat_desc.max_length;
            int h;              // heap index
            int n, m;           // iterate over the tree elements
            int bits;           // bit length
            int xbits;          // extra bits
            short f;            // frequency
            int overflow = 0;   // number of elements with bit length too large

            for (bits = 0; bits <= MAX_BITS; bits++) s.bl_count[bits] = 0;

            // In a first pass, compute the optimal bit lengths (which may
            // overflow in the case of the bit length tree).
            tree[s.heap[s.heap_max]*2+1] = 0; // root of the heap

            for(h=s.heap_max+1; h<HEAP_SIZE; h++){
                n = s.heap[h];
                bits = tree[tree[n*2+1]*2+1] + 1;
                if (bits > max_length){ bits = max_length; overflow++; }
                tree[n*2+1] = (short)bits;
                // We overwrite tree[n*2+1] which is no longer needed

                if (n > max_code) continue;  // not a leaf node

                s.bl_count[bits]++;
                xbits = 0;
                if (n >= based) xbits = extra[n-based];
                f = tree[n*2];
                s.opt_len += f * (bits + xbits);
                if (stree!=null) s.static_len += f * (stree[n*2+1] + xbits);
            }
            if (overflow == 0) return;

            // This happens for example on obj2 and pic of the Calgary corpus
            // Find the first bit length which could increase:
            do {
                bits = max_length-1;
            while(s.bl_count[bits]==0) bits--;
                s.bl_count[bits]--;      // move one leaf down the tree
                s.bl_count[bits+1]+=2;   // move one overflow item as its brother
                s.bl_count[max_length]--;
                // The brother of the overflow item also moves one step up,
                // but this does not affect bl_count[max_length]
                overflow -= 2;
            }
            while (overflow > 0);

            for (bits = max_length; bits != 0; bits--) {
                n = s.bl_count[bits];
                while (n != 0) {
                    m = s.heap[--h];
                    if (m > max_code) continue;
                    if (tree[m*2+1] != bits) {
                        s.opt_len += (int)(((long)bits - (long)tree[m*2+1])*(long)tree[m*2]);
                        tree[m*2+1] = (short)bits;
                    }
                    n--;
                }
            }
        }
Example #18
0
        // Construct one Huffman tree and assigns the code bit strings and lengths.
        // Update the total bit length for the current block.
        // IN assertion: the field freq is set for all tree elements.
        // OUT assertions: the fields len and code are set to the optimal bit length
        //     and corresponding code. The length opt_len is updated; static_len is
        //     also updated if stree is not null. The field max_code is set.
        internal void build_tree(Deflate s)
        {
            short[] tree = dyn_tree;
            short[] stree = stat_desc.static_tree;
            int     elems = stat_desc.elems;
            int     n, m;          // iterate over heap elements
            int     max_code = -1; // largest code with non zero frequency
            int     node;          // new node being created

            // Construct the initial heap, with least frequent element in
            // heap[1]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
            // heap[0] is not used.
            s.heap_len = 0;
            s.heap_max = HEAP_SIZE;

            for (n = 0; n < elems; n++)
            {
                if (tree[n * 2] != 0)
                {
                    s.heap[++s.heap_len] = max_code = n;
                    s.depth[n]           = 0;
                }
                else
                {
                    tree[n * 2 + 1] = 0;
                }
            }

            // The pkzip format requires that at least one distance code exists,
            // and that at least one bit should be sent even if there is only one
            // possible code. So to avoid special checks later on we force at least
            // two codes of non zero frequency.
            while (s.heap_len < 2)
            {
                node           = s.heap[++s.heap_len] = (max_code < 2 ? ++max_code : 0);
                tree[node * 2] = 1;
                s.depth[node]  = 0;
                s.opt_len--; if (stree != null)
                {
                    s.static_len -= stree[node * 2 + 1];
                }
                // node is 0 or 1 so it does not have extra bits
            }
            this.max_code = max_code;

            // The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
            // establish sub-heaps of increasing lengths:

            for (n = s.heap_len / 2; n >= 1; n--)
            {
                s.pqdownheap(tree, n);
            }

            // Construct the Huffman tree by repeatedly combining the least two
            // frequent nodes.

            node = elems;                 // next internal node of the tree
            do
            {
                // n = node of least frequency
                n         = s.heap[1];
                s.heap[1] = s.heap[s.heap_len--];
                s.pqdownheap(tree, 1);
                m = s.heap[1];            // m = node of next least frequency

                s.heap[--s.heap_max] = n; // keep the nodes sorted by frequency
                s.heap[--s.heap_max] = m;

                // Create a new node father of n and m
                tree[node * 2]  = (short)(tree[n * 2] + tree[m * 2]);
                s.depth[node]   = (byte)(System.Math.Max(s.depth[n], s.depth[m]) + 1);
                tree[n * 2 + 1] = tree[m * 2 + 1] = (short)node;

                // and insert the new node in the heap
                s.heap[1] = node++;
                s.pqdownheap(tree, 1);
            }while(s.heap_len >= 2);

            s.heap[--s.heap_max] = s.heap[1];

            // At this point, the fields freq and dad are set. We can now
            // generate the bit lengths.

            gen_bitlen(s);

            // The field len is now set, we can generate the bit codes
            gen_codes(tree, max_code, s.bl_count);
        }
Example #19
0
 public int deflateEnd(){
     if(dstate==null) return Z_STREAM_ERROR;
     int ret=dstate.deflateEnd();
     dstate=null;
     return ret;
 }
Example #20
0
        internal void gen_bitlen(Deflate s)
        {
            short[] array       = dyn_tree;
            short[] static_tree = stat_desc.static_tree;
            int[]   extra_bits  = stat_desc.extra_bits;
            int     extra_base  = stat_desc.extra_base;
            int     max_length  = stat_desc.max_length;
            int     num         = 0;

            for (int i = 0; i <= 15; i++)
            {
                s.bl_count[i] = 0;
            }
            array[s.heap[s.heap_max] * 2 + 1] = 0;
            int j;

            for (j = s.heap_max + 1; j < 573; j++)
            {
                int num2 = s.heap[j];
                int i    = array[array[num2 * 2 + 1] * 2 + 1] + 1;
                if (i > max_length)
                {
                    i = max_length;
                    num++;
                }
                array[num2 * 2 + 1] = (short)i;
                if (num2 <= max_code)
                {
                    short[] bl_count;
                    short[] array2 = (bl_count = s.bl_count);
                    int     num3   = i;
                    global::System.IntPtr intPtr = (global::System.IntPtr)num3;
                    array2[num3] = (short)(bl_count[(long)intPtr] + 1);
                    int num4 = 0;
                    if (num2 >= extra_base)
                    {
                        num4 = extra_bits[num2 - extra_base];
                    }
                    short num5 = array[num2 * 2];
                    s.opt_len += num5 * (i + num4);
                    if (static_tree != null)
                    {
                        s.static_len += num5 * (static_tree[num2 * 2 + 1] + num4);
                    }
                }
            }
            if (num == 0)
            {
                return;
            }
            do
            {
                int i = max_length - 1;
                while (s.bl_count[i] == 0)
                {
                    i--;
                }
                short[] bl_count;
                short[] array3 = (bl_count = s.bl_count);
                int     num6   = i;
                global::System.IntPtr intPtr = (global::System.IntPtr)num6;
                array3[num6] = (short)(bl_count[(long)intPtr] - 1);
                short[] array4 = (bl_count = s.bl_count);
                int     num7   = i + 1;
                intPtr       = (global::System.IntPtr)num7;
                array4[num7] = (short)(bl_count[(long)intPtr] + 2);
                short[] array5 = (bl_count = s.bl_count);
                intPtr             = (global::System.IntPtr)max_length;
                array5[max_length] = (short)(bl_count[(long)intPtr] - 1);
                num -= 2;
            }while (num > 0);
            for (int i = max_length; i != 0; i--)
            {
                int num2 = s.bl_count[i];
                while (num2 != 0)
                {
                    int num8 = s.heap[--j];
                    if (num8 <= max_code)
                    {
                        if (array[num8 * 2 + 1] != i)
                        {
                            s.opt_len          += (int)(((long)i - (long)array[num8 * 2 + 1]) * array[num8 * 2]);
                            array[num8 * 2 + 1] = (short)i;
                        }
                        num2--;
                    }
                }
            }
        }
Example #21
0
        internal void build_tree(Deflate s)
        {
            int num2;
            int num5;

            short[] tree      = this.dyn_tree;
            short[] numArray2 = this.stat_desc.static_tree;
            int     elems     = this.stat_desc.elems;
            int     num4      = -1;

            s.heap_len = 0;
            s.heap_max = 0x23d;
            for (num2 = 0; num2 < elems; num2++)
            {
                if (tree[num2 * 2] != 0)
                {
                    s.heap[++s.heap_len] = num4 = num2;
                    s.depth[num2]        = 0;
                }
                else
                {
                    tree[(num2 * 2) + 1] = 0;
                }
            }
            while (s.heap_len < 2)
            {
                num5           = s.heap[++s.heap_len] = (num4 >= 2) ? 0 : ++num4;
                tree[num5 * 2] = 1;
                s.depth[num5]  = 0;
                s.opt_len--;
                if (numArray2 != null)
                {
                    s.static_len -= numArray2[(num5 * 2) + 1];
                }
            }
            this.max_code = num4;
            num2          = s.heap_len / 2;
            while (num2 >= 1)
            {
                s.pqdownheap(tree, num2);
                num2--;
            }
            num5 = elems;
            do
            {
                num2      = s.heap[1];
                s.heap[1] = s.heap[s.heap_len--];
                s.pqdownheap(tree, 1);
                int index = s.heap[1];
                s.heap[--s.heap_max] = num2;
                s.heap[--s.heap_max] = index;
                tree[num5 * 2]       = (short)(tree[num2 * 2] + tree[index * 2]);
                s.depth[num5]        = (byte)(Math.Max(s.depth[num2], s.depth[index]) + 1);
                tree[(num2 * 2) + 1] = tree[(index * 2) + 1] = (short)num5;
                s.heap[1]            = num5++;
                s.pqdownheap(tree, 1);
            }while (s.heap_len >= 2);
            s.heap[--s.heap_max] = s.heap[1];
            this.gen_bitlen(s);
            gen_codes(tree, num4, s.bl_count);
        }
        // Construct one Huffman tree and assigns the code bit strings and lengths.
        // Update the total bit length for the current block.
        // IN assertion: the field freq is set for all tree elements.
        // OUT assertions: the fields len and code are set to the optimal bit length
        //     and corresponding code. The length opt_len is updated; static_len is
        //     also updated if stree is not null. The field max_code is set.
        internal void build_tree(Deflate s){
            short[] tree=dyn_tree;
            short[] stree=stat_desc.static_tree;
            int elems=stat_desc.elems;
            int n, m;          // iterate over heap elements
            int max_code=-1;   // largest code with non zero frequency
            int node;          // new node being created

            // Construct the initial heap, with least frequent element in
            // heap[1]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
            // heap[0] is not used.
            s.heap_len = 0;
            s.heap_max = HEAP_SIZE;

            for(n=0; n<elems; n++) {
                if(tree[n*2] != 0) {
                    s.heap[++s.heap_len] = max_code = n;
                    s.depth[n] = 0;
                }
                else{
                    tree[n*2+1] = 0;
                }
            }

            // The pkzip format requires that at least one distance code exists,
            // and that at least one bit should be sent even if there is only one
            // possible code. So to avoid special checks later on we force at least
            // two codes of non zero frequency.
            while (s.heap_len < 2) {
                node = s.heap[++s.heap_len] = (max_code < 2 ? ++max_code : 0);
                tree[node*2] = 1;
                s.depth[node] = 0;
                s.opt_len--; if (stree!=null) s.static_len -= stree[node*2+1];
                // node is 0 or 1 so it does not have extra bits
            }
            this.max_code = max_code;

            // The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
            // establish sub-heaps of increasing lengths:

            for(n=s.heap_len/2;n>=1; n--)
                s.pqdownheap(tree, n);

            // Construct the Huffman tree by repeatedly combining the least two
            // frequent nodes.

            node=elems;                 // next internal node of the tree
            do{
                // n = node of least frequency
                n=s.heap[1];
                s.heap[1]=s.heap[s.heap_len--];
                s.pqdownheap(tree, 1);
                m=s.heap[1];                // m = node of next least frequency

                s.heap[--s.heap_max] = n; // keep the nodes sorted by frequency
                s.heap[--s.heap_max] = m;

                // Create a new node father of n and m
                tree[node*2] = (short)(tree[n*2] + tree[m*2]);
                s.depth[node] = (byte)(System.Math.Max(s.depth[n],s.depth[m])+1);
                tree[n*2+1] = tree[m*2+1] = (short)node;

                // and insert the new node in the heap
                s.heap[1] = node++;
                s.pqdownheap(tree, 1);
            }
            while(s.heap_len>=2);

            s.heap[--s.heap_max] = s.heap[1];

            // At this point, the fields freq and dad are set. We can now
            // generate the bit lengths.

            gen_bitlen(s);

            // The field len is now set, we can generate the bit codes
            gen_codes(tree, max_code, s.bl_count);
        }
Example #23
0
        internal void gen_bitlen(Deflate s)
        {
            short[] array       = dyn_tree;
            short[] static_tree = stat_desc.static_tree;
            int[]   extra_bits  = stat_desc.extra_bits;
            int     extra_base  = stat_desc.extra_base;
            int     max_length  = stat_desc.max_length;
            int     num         = 0;

            for (int i = 0; i <= 15; i++)
            {
                s.bl_count[i] = 0;
            }
            array[s.heap[s.heap_max] * 2 + 1] = 0;
            int j;

            for (j = s.heap_max + 1; j < 573; j++)
            {
                int num2 = s.heap[j];
                int i    = array[array[num2 * 2 + 1] * 2 + 1] + 1;
                if (i > max_length)
                {
                    i = max_length;
                    num++;
                }
                array[num2 * 2 + 1] = (short)i;
                if (num2 <= max_code)
                {
                    s.bl_count[i]++;
                    int num3 = 0;
                    if (num2 >= extra_base)
                    {
                        num3 = extra_bits[num2 - extra_base];
                    }
                    short num4 = array[num2 * 2];
                    s.opt_len += num4 * (i + num3);
                    if (static_tree != null)
                    {
                        s.static_len += num4 * (static_tree[num2 * 2 + 1] + num3);
                    }
                }
            }
            if (num != 0)
            {
                do
                {
                    int i = max_length - 1;
                    while (s.bl_count[i] == 0)
                    {
                        i--;
                    }
                    s.bl_count[i]--;
                    s.bl_count[i + 1] += 2;
                    s.bl_count[max_length]--;
                    num -= 2;
                }while (num > 0);
                for (int i = max_length; i != 0; i--)
                {
                    int num2 = s.bl_count[i];
                    while (num2 != 0)
                    {
                        int num5 = s.heap[--j];
                        if (num5 <= max_code)
                        {
                            if (array[num5 * 2 + 1] != i)
                            {
                                s.opt_len          += (int)(((long)i - (long)array[num5 * 2 + 1]) * array[num5 * 2]);
                                array[num5 * 2 + 1] = (short)i;
                            }
                            num2--;
                        }
                    }
                }
            }
        }