Example #1
0
        public static void subXor(NetworkGenome cppn)
        {
            DecodedNetworks decodedNetwork = (DecodedNetworks)null;

            double[] inputs = new double[4];
            bool     flag1  = true;

            inputs[0] = 1.0;
            inputs[1] = 0.0;
            inputs[2] = 0.0;
            inputs[3] = 0.0;
            decodedNetwork.SetInputs(inputs);
            decodedNetwork.ActivateNetwork(2);
            double[] outputs1 = decodedNetwork.GetOutputs();
            cppn.Fitness  = 0.0;
            cppn.Fitness += Math.Min(1.0, Math.Max(0.0, 1.0 - outputs1[0]));
            bool flag2 = flag1 && outputs1[0] < 0.5;

            decodedNetwork.Flush();
            inputs[0] = 0.0;
            inputs[1] = 0.0;
            inputs[2] = 0.0;
            inputs[3] = 1.0;
            decodedNetwork.SetInputs(inputs);
            decodedNetwork.ActivateNetwork(2);
            double[] outputs2 = decodedNetwork.GetOutputs();
            cppn.Fitness += Math.Min(1.0, Math.Max(0.0, 1.0 - outputs2[0]));
            bool flag3 = flag2 && outputs2[0] < 0.5;

            decodedNetwork.Flush();
            inputs[0] = 0.0;
            inputs[1] = 1.0;
            inputs[2] = 0.0;
            inputs[3] = 0.0;
            decodedNetwork.SetInputs(inputs);
            decodedNetwork.ActivateNetwork(2);
            double[] outputs3 = decodedNetwork.GetOutputs();
            cppn.Fitness += Math.Min(1.0, Math.Max(0.0, outputs3[0]));
            bool flag4 = flag3 && outputs3[0] >= 0.5;

            decodedNetwork.Flush();
            inputs[0] = 0.0;
            inputs[1] = 0.0;
            inputs[2] = 1.0;
            inputs[3] = 0.0;
            decodedNetwork.SetInputs(inputs);
            decodedNetwork.ActivateNetwork(2);
            double[] outputs4 = decodedNetwork.GetOutputs();
            cppn.Fitness += Math.Min(1.0, Math.Max(0.0, outputs4[0]));
            bool flag5 = flag4 && outputs4[0] >= 0.5;

            decodedNetwork.Flush();
            if (!flag5)
            {
                return;
            }
            cppn.Fitness = 4.0;
        }
Example #2
0
        public static void Xor(object target)
        {
            NetworkGenome genome = target as NetworkGenome;

            double[]        inputs         = new double[2];
            bool            flag1          = true;
            DecodedNetworks decodedNetwork = DecodedNetworks.DecodeGenome(genome);

            inputs[0] = 0.0;
            inputs[1] = 0.0;
            decodedNetwork.SetInputs(inputs);
            decodedNetwork.ActivateNetwork(6);
            double[] outputs1 = decodedNetwork.GetOutputs();
            genome.Fitness  = 0.0;
            genome.Fitness += Math.Min(1.0, Math.Max(0.0, 1.0 - outputs1[0]));
            bool flag2 = flag1 && outputs1[0] < 0.5;

            decodedNetwork.Flush();
            inputs[0] = 1.0;
            inputs[1] = 1.0;
            decodedNetwork.SetInputs(inputs);
            decodedNetwork.ActivateNetwork(6);
            double[] outputs2 = decodedNetwork.GetOutputs();
            genome.Fitness += Math.Min(1.0, Math.Max(0.0, 1.0 - outputs2[0]));
            bool flag3 = flag2 && outputs2[0] < 0.5;

            decodedNetwork.Flush();
            inputs[0] = 0.0;
            inputs[1] = 1.0;
            decodedNetwork.SetInputs(inputs);
            decodedNetwork.ActivateNetwork(6);
            double[] outputs3 = decodedNetwork.GetOutputs();
            genome.Fitness += Math.Min(1.0, Math.Max(0.0, outputs3[0]));
            bool flag4 = flag3 && outputs3[0] >= 0.5;

            decodedNetwork.Flush();
            inputs[0] = 1.0;
            inputs[1] = 0.0;
            decodedNetwork.SetInputs(inputs);
            decodedNetwork.ActivateNetwork(6);
            double[] outputs4 = decodedNetwork.GetOutputs();
            genome.Fitness += Math.Min(1.0, Math.Max(0.0, outputs4[0]));
            bool flag5 = flag4 && outputs4[0] >= 0.5;

            decodedNetwork.Flush();
            if (!flag5)
            {
                return;
            }
            genome.Fitness = 4.0;
        }
Example #3
0
        public static bool NormalXor(List <NetworkGenome> genomes, bool test)
        {
            double[] inputs = new double[2];
            bool     flag1  = false;

            foreach (NetworkGenome genome in genomes)
            {
                bool            flag2          = true;
                DecodedNetworks decodedNetwork = DecodedNetworks.DecodeGenome(genome);
                inputs[0] = 0.0;
                inputs[1] = 0.0;
                decodedNetwork.SetInputs(inputs);
                decodedNetwork.ActivateNetwork(6);
                double[] outputs1 = decodedNetwork.GetOutputs();
                genome.Fitness  = 0.0;
                genome.Fitness += Math.Min(1.0, Math.Max(0.0, 1.0 - outputs1[0]));
                bool flag3 = flag2 && outputs1[0] < 0.5;
                decodedNetwork.Flush();
                inputs[0] = 1.0;
                inputs[1] = 1.0;
                decodedNetwork.SetInputs(inputs);
                decodedNetwork.ActivateNetwork(6);
                double[] outputs2 = decodedNetwork.GetOutputs();
                genome.Fitness += Math.Min(1.0, Math.Max(0.0, 1.0 - outputs2[0]));
                bool flag4 = flag3 && outputs2[0] < 0.5;
                decodedNetwork.Flush();
                inputs[0] = 0.0;
                inputs[1] = 1.0;
                decodedNetwork.SetInputs(inputs);
                decodedNetwork.ActivateNetwork(6);
                double[] outputs3 = decodedNetwork.GetOutputs();
                genome.Fitness += Math.Min(1.0, Math.Max(0.0, outputs3[0]));
                bool flag5 = flag4 && outputs3[0] >= 0.5;
                decodedNetwork.Flush();
                inputs[0] = 1.0;
                inputs[1] = 0.0;
                decodedNetwork.SetInputs(inputs);
                decodedNetwork.ActivateNetwork(6);
                double[] outputs4 = decodedNetwork.GetOutputs();
                genome.Fitness += Math.Min(1.0, Math.Max(0.0, outputs4[0]));
                bool flag6 = flag5 && outputs4[0] >= 0.5;
                decodedNetwork.Flush();
                if (flag6)
                {
                    genome.Fitness = 4.0;
                }
                flag1 = flag1 || flag6;
            }
            return(flag1);
        }
Example #4
0
        //by phillip
        static void MapWeights(NetworkGenome genome, DecodedNetworks cppn)
        {
            double[]       coords = new double[4];
            double[]       output;
            LinkGene       temp;
            SubstrateNodes source;
            SubstrateNodes target;

            int linkId = 0;

            for (int i = 1; i < genome.Links.Count; i++)
            {
                temp   = genome.Links[i];
                source = (SubstrateNodes)genome.Nodes[temp.Source];
                target = (SubstrateNodes)genome.Nodes[temp.Target];
                if (temp.Source != 0)
                {
                    coords[0] = source.Coordinate[0];
                    coords[1] = source.Coordinate[1];
                }
                else
                {
                    coords[0] = target.Coordinate[0];
                    coords[1] = target.Coordinate[1];
                }
                coords[2] = target.Coordinate[0];
                coords[3] = target.Coordinate[1];
                cppn.Flush();
                cppn.SetInputs(coords);
                cppn.ActivateNetwork(5);
                output = cppn.GetOutputs();


                if (source.Id != 0)
                {
                    temp.Weight = output[0];
                }
                else
                {
                    temp.Weight = output[1];
                }
            }

            if (saveSub)
            {
                NetworkGenome.SaveToFile(genome, "Sub.xml");
                saveSub = false;
            }
        }
Example #5
0
 public void CopyLinks(DecodedNetworks net)
 {
     DecodedNetworks.Link link = new DecodedNetworks.Link();
     link.sourceNode = -1;
     link.weight     = 0.0;
     for (int index1 = 0; index1 < this.ActivatingNodes.Count && index1 < net.ActivatingNodes.Count; ++index1)
     {
         this.ActivatingNodes[index1].links.Clear();
         for (int index2 = 0; index2 < net.ActivatingNodes[index1].links.Count && net.ActivatingNodes[index1].links[index2].sourceNode != -1; ++index2)
         {
             this.ActivatingNodes[index1].links.Add(net.ActivatingNodes[index1].links[index2]);
         }
         this.ActivatingNodes[index1].links.Add(link);
     }
 }
Example #6
0
        public static void XorCreate(NetworkGenome sub, DecodedNetworks cppn)
        {
            SubstrateNodes substrateNode1 = sub.Nodes.Find((Predicate <NodeGene>)(n => n.Type == NodeType.Output)) as SubstrateNodes;

            double[] inputs = new double[4];
            int      id     = 0;

            for (int index = 0; index < sub.Nodes.Count - 1; ++index)
            {
                SubstrateNodes substrateNode2 = sub.Nodes[index] as SubstrateNodes;
                cppn.Flush();
                inputs[0] = substrateNode2.Coordinate[0];
                inputs[1] = substrateNode2.Coordinate[1];
                inputs[2] = substrateNode1.Coordinate[0];
                inputs[3] = substrateNode1.Coordinate[1];
                cppn.SetInputs(inputs);
                cppn.ActivateNetwork(5);
                double[] outputs = cppn.GetOutputs();
                sub.Links.Add(new LinkGene(id, substrateNode2.Id, substrateNode1.Id, outputs[0]));
            }
        }
Example #7
0
        public object Clone()
        {
            DecodedNetworks decodedNetwork = new DecodedNetworks();

            decodedNetwork.Inputs          = new List <DecodedNetworks.Node>(this.Inputs.Count);
            decodedNetwork.Neurons         = new List <DecodedNetworks.Node>(this.Neurons.Count);
            decodedNetwork.ActivatingNodes = new List <DecodedNetworks.Node>(this.ActivatingNodes.Count);
            decodedNetwork.OutputArray     = new double[this.OutputArray.Length];
            decodedNetwork.Outputs         = new List <DecodedNetworks.Node>(this.Outputs.Count);
            for (int index1 = 0; index1 < this.Neurons.Count; ++index1)
            {
                DecodedNetworks.Node node = new DecodedNetworks.Node();
                node.activation = this.Neurons[index1].activation;
                node.links      = new List <DecodedNetworks.Link>(this.Neurons[index1].links.Count);
                for (int index2 = 0; index2 < this.Neurons[index1].links.Count; ++index2)
                {
                    node.links.Add(this.Neurons[index1].links[index2]);
                }
                node.signal     = 0.0;
                node.tempSignal = 0.0;
                decodedNetwork.Neurons.Add(node);
                if (this.Inputs.Contains(this.Neurons[index1]))
                {
                    decodedNetwork.Inputs.Add(node);
                }
                else if (this.Outputs.Contains(this.Neurons[index1]))
                {
                    decodedNetwork.Outputs.Add(node);
                    decodedNetwork.ActivatingNodes.Add(node);
                }
                else if (this.ActivatingNodes.Contains(this.Neurons[index1]))
                {
                    decodedNetwork.ActivatingNodes.Add(node);
                }
            }
            return((object)decodedNetwork);
        }
Example #8
0
        //modified
        private static double[] Evaluate(DecodedNetworks network)
        {
            int cycles = 0; double teamDispersion = 0; double distfromcentre = 0;

            double[] dist   = new double[players.Count];
            double[] values = new double[4];
            for (int i = 0; i < players.Count; i++)
            {
                players[i].net = network;
            }

            do
            {
                timer.RunCycle();
                cycles++;
                //computes the team dispersion on the field of play
                for (int j = 0; j < players[0].teammates.Count; j++)
                {
                    dist[j] += players[0].teammatesp[j].distance(players[0].Position);
                }
                distfromcentre += ballPos;
            } while (!kref.episodeEnded);
            kref.episodeEnded = false;

            for (int j = 0; j < players[0].teammates.Count; j++)
            {
                teamDispersion += (dist[j] / cycles);
            }
            distfromcentre /= cycles;
            teamDispersion /= (players[0].teammates.Count);
            cycles         /= 10;
            values[0]       = cycles; values[1] = teamDispersion;
            values[2]       = no_passes; values[3] = distfromcentre;
            no_passes       = 0; distfromcentre = 0; teamDispersion = 0;
            return(values);
        }
Example #9
0
        //based on phillip modified
        static bool HyperNEATKeepaway(List <NetworkGenome> genomes, bool test)
        {
            if (!test)
            {
                int evaluations = 0;
                Dictionary <int, int> evalCount = new Dictionary <int, int>();
                List <int>            keys      = new List <int>(mapping.Keys);
                for (int i = 0; i < genomes.Count; i++)
                {
                    possibleValues.Add(i);
                }

                for (int i = 0; i < keys.Count; i++)
                {
                    if (!genomes.Any(gen => gen.Id == keys[i]))
                    {
                        mapping.Remove(keys[i]);
                    }
                    else
                    {
                        possibleValues.Remove(mapping[keys[i]]);
                    }
                }

                for (int i = 0; i < genomes.Count; i++)
                {
                    genomes[i].Fitness = 0;
                    for (int l = 0; l < maxVec.Length; l++)
                    {
                        genomes[i].BehaviorType.bVector[l] = 0;
                    }
                    if (!mapping.ContainsKey(genomes[i].Id))
                    {
                        DecodedNetworks net = sub.GenerateNetwork(MapWeights, DecodedNetworks.DecodeGenome(genomes[i]));

                        if (createdNetworks.Count < genomes.Count)
                        {
                            createdNetworks.Add(net.Clone() as DecodedNetworks);
                            mapping.Add(genomes[i].Id, i);
                        }
                        else
                        {
                            createdNetworks[possibleValues[0]].CopyLinks(net);
                            mapping.Add(genomes[i].Id, possibleValues[0]);
                            possibleValues.RemoveAt(0);
                        }
                    }
                }

                for (int i = 0; i < genomes.Count; i++)
                {
                    //receives the fitness value and behavioral characterisation values from
                    //Fitness Evaluation function.
                    double[] fitness = new double[4];

                    for (int j = 0; j < config.Episodes; j++)
                    {
                        fitness = Evaluate(createdNetworks[mapping[genomes[i].Id]]);
                        genomes[i].RealFitness += fitness[0];
                        for (int v = 0; v < fitness.Length; v++)
                        {
                            genomes[i].BehaviorType.bVector[v] += fitness[v];
                        }
                    }
                    genomes[i].RealFitness /= config.Episodes;
                    for (int v = 0; v < fitness.Length; v++)
                    {
                        genomes[i].BehaviorType.bVector[v] /= config.Episodes;
                    }
                    evalCount[genomes[i].Id] = config.Episodes;
                    evaluations += config.Episodes;
                }


                List <double> lists = new List <double>();

                genomes.Sort((a, b) => b.Fitness.CompareTo(a.Fitness));
                double Max0 = 0; double Max1 = 0; double Max2 = 0; double fit = 0;

                for (int i = 0; i < genomes.Count; i++)
                {
                    maxVec[0] = genomes[i].RealFitness;
                    for (int v = 1; v < maxVec.Length; v++)
                    {
                        if (genomes[i].BehaviorType.bVector[v] > maxVec[v])
                        {
                            maxVec[v] = genomes[i].BehaviorType.bVector[v];
                        }
                    }
                }

                //double fitnormaliser = 11;
                for (int j = 0; j < genomes.Count; j++)
                {
                    genomes[j].RealFitness             /= fitnormaliser;
                    genomes[j].BehaviorType.bVector[0] /= fitnormaliser;
                    for (int v = 1; v < maxVec.Length; v++)
                    {
                        genomes[j].BehaviorType.bVector[v] /= maxVec[v];
                    }
                }

                foreach (NetworkGenome genome in genomes)
                {
                    genome.Novelty             = genome.NoveltyMeasure.computeNovelty(genome, genomes);
                    genome.Genotypic_Diversity = genome.GenomeDiversity.DiversityDistance(genomes, genome) / 110;
                    switch (config.SearchMethod)
                    {
                    case 1:
                    {
                        genome.Fitness = genome.RealFitness;        //Objective based Search
                        break;
                    }

                    case 2:
                    {
                        genome.Fitness = genome.Novelty;         //Novelty Search
                        break;
                    }

                    case 3:
                    {
                        genome.Fitness = genome.RealFitness * config.scalariser + genome.Novelty * (1 - config.scalariser);
                        break;         //Hybrid (Novelty + Objective based Search)
                    }

                    case 4:
                    {
                        genome.Fitness = genome.Genotypic_Diversity;         //Genotypic Diversity Search
                        break;
                    }

                    case 5:
                    {
                        genome.Fitness = genome.RealFitness * config.scalariser + genome.Genotypic_Diversity * (1 - config.scalariser);
                        break;         //Hybrid (Objective + Genotypic Diversity)
                    }

                    default:
                    {
                        genome.Fitness = genome.RealFitness;
                        break;
                    }
                    }
                }

                ComputeNovelty.addToArchive(genomes); //add the best N genomes to archive

                return(false);
            }
            else
            {
                for (int i = 0; i < genomes.Count; i++)
                {
                    if (genomes.FindIndex(g => genomes[i].Id == g.Id) < i)
                    {
                        continue;
                    }
                    genomes[i].Fitness = 0;

                    {
                        DecodedNetworks net     = sub.GenerateNetwork(MapWeights, DecodedNetworks.DecodeGenome(genomes[i]));
                        double[]        fitness = new double[4];
                        for (int j = 0; j < config.Episodes; j++)
                        {
                            fitness = Evaluate(createdNetworks[mapping[genomes[i].Id]]);
                            genomes[i].RealFitness += fitness[0];
                            for (int v = 0; v < fitness.Length; v++)
                            {
                                genomes[i].BehaviorType.bVector[v] += fitness[v];
                            }
                        }
                        genomes[i].RealFitness /= config.Episodes;
                        for (int v = 0; v < fitness.Length; v++)
                        {
                            genomes[i].BehaviorType.bVector[v] /= config.Episodes;
                        }
                    }
                }
                //double fitnormaliser = 11;
                for (int i = 0; i < genomes.Count; i++)
                {
                    maxVec[0] = genomes[i].RealFitness;
                    for (int v = 1; v < maxVec.Length; v++)
                    {
                        if (genomes[i].BehaviorType.bVector[v] > maxVec[v])
                        {
                            maxVec[v] = genomes[i].BehaviorType.bVector[v];
                        }
                    }
                }
                for (int j = 0; j < genomes.Count; j++)
                {
                    genomes[j].RealFitness             /= fitnormaliser;
                    genomes[j].BehaviorType.bVector[0] /= fitnormaliser;
                    for (int v = 1; v < maxVec.Length; v++)
                    {
                        genomes[j].BehaviorType.bVector[v] /= maxVec[v];
                    }
                }

                foreach (NetworkGenome genome in genomes)
                {
                    genome.Novelty             = genome.NoveltyMeasure.computeNovelty(genome, genomes);
                    genome.Genotypic_Diversity = genome.GenomeDiversity.DiversityDistance(genomes, genome) / 110;
                    switch (config.SearchMethod)
                    {
                    case 1:
                    {
                        genome.Fitness = genome.RealFitness;        //Objective based Search
                        break;
                    }

                    case 2:
                    {
                        genome.Fitness = genome.Novelty;         //Novelty Search
                        break;
                    }

                    case 3:
                    {
                        genome.Fitness = genome.RealFitness * config.scalariser + genome.Novelty * (1 - config.scalariser);
                        break;         //Hybrid (Novelty + Objective based Search)
                    }

                    case 4:
                    {
                        genome.Fitness = genome.Genotypic_Diversity;         //Genotypic Diversity Search
                        break;
                    }

                    case 5:
                    {
                        genome.Fitness = genome.RealFitness * config.scalariser + genome.Genotypic_Diversity * (1 - config.scalariser);
                        break;         //Hybrid (Objective + Genotypic Diversity)
                    }

                    default:
                    {
                        genome.Fitness = genome.RealFitness;
                        break;
                    }
                    }
                }
                ComputeNovelty.addToArchive(genomes); //add the N genomes to archive
            }

            return(false);
        }
Example #10
0
        public static DecodedNetworks DecodeGenome(NetworkGenome genome)
        {
            DecodedNetworks decodedNetwork = new DecodedNetworks();
            NetworkGenome   NetworkGenome  = genome.Clone() as NetworkGenome;

            NetworkGenome.Nodes.Sort();
            for (int index = 0; index < NetworkGenome.Nodes.Count; ++index)
            {
                if (NetworkGenome.Nodes[index].Id != index)
                {
                    foreach (LinkGene LinkGenes in NetworkGenome.Links)
                    {
                        if (LinkGenes.Source == NetworkGenome.Nodes[index].Id)
                        {
                            LinkGenes.Source = index;
                        }
                        if (LinkGenes.Target == NetworkGenome.Nodes[index].Id)
                        {
                            LinkGenes.Target = index;
                        }
                    }
                }
                NetworkGenome.Nodes[index].Id = index;
            }
            foreach (NodeGene NodeGenes in NetworkGenome.Nodes)
            {
                DecodedNetworks.Node node = new DecodedNetworks.Node();
                node.activation = ActivationFunctions.GetFunction(NodeGenes.Function);
                foreach (LinkGene LinkGenes in NetworkGenome.Links)
                {
                    if (LinkGenes.Target == NodeGenes.Id)
                    {
                        node.links.Add(new DecodedNetworks.Link()
                        {
                            sourceNode = LinkGenes.Source,
                            weight     = LinkGenes.Weight
                        });
                    }
                }
                if (NodeGenes.Type == NodeType.Bias)
                {
                    node.signal = 1.0;
                    decodedNetwork.Neurons.Add(node);
                }
                else if (NodeGenes.Type == NodeType.Input)
                {
                    decodedNetwork.Neurons.Add(node);
                    decodedNetwork.Inputs.Add(node);
                }
                else if (NodeGenes.Type == NodeType.Hidden)
                {
                    decodedNetwork.Neurons.Add(node);
                    decodedNetwork.ActivatingNodes.Add(node);
                }
                else
                {
                    decodedNetwork.Neurons.Add(node);
                    decodedNetwork.ActivatingNodes.Add(node);
                    decodedNetwork.Outputs.Add(node);
                }
            }
            decodedNetwork.OutputArray = new double[decodedNetwork.Outputs.Count];
            return(decodedNetwork);
        }
Example #11
0
        public DecodedNetworks GenerateNetwork(MapWeights create, DecodedNetworks cppn)
        {
            for (int index = 0; index < this.net.ActivatingNodes.Count; ++index)
            {
                this.net.ActivatingNodes[index].links.Clear();
            }
            create(this.sub, cppn);
            double val1 = 0.0;

            foreach (LinkGene linkGene in this.sub.Links)
            {
                val1 = Math.Max(val1, Math.Abs(linkGene.Weight));
            }
            List <LinkGene> list             = new List <LinkGene>();
            double          staticThreshold1 = Substrates.param.StaticThreshold;

            DecodedNetworks.Link link1;
            using (List <LinkGene> .Enumerator enumerator = this.sub.Links.GetEnumerator())
            {
                while (enumerator.MoveNext())
                {
                    LinkGene link = enumerator.Current;
                    link.Weight *= Substrates.param.WeightRange / (2.0 * val1);
                    double staticThreshold2 = Substrates.param.StaticThreshold;
                    if (Substrates.param.ThresholdByDistance)
                    {
                        SubstrateNodes substrateNode1 = this.sub.Nodes.Find((Predicate <NodeGene>)(n => n.Id == link.Source)) as SubstrateNodes;
                        SubstrateNodes substrateNode2 = this.sub.Nodes.Find((Predicate <NodeGene>)(n => n.Id == link.Target)) as SubstrateNodes;
                        double         d = 0.0;
                        for (int index = 0; index < substrateNode1.Coordinate.Count; ++index)
                        {
                            double num = substrateNode1.Coordinate[index] - substrateNode2.Coordinate[index];
                            d += num * num;
                        }
                        double num1 = Math.Sqrt(d);
                        staticThreshold2 += num1 * Substrates.param.StaticThreshold;
                    }
                    if (Math.Abs(link.Weight) >= staticThreshold2)
                    {
                        link1.sourceNode = link.Source;
                        link1.weight     = link.Weight;
                        this.net.Neurons[link.Target].links.Add(link1);
                    }
                }
            }
            for (int index = 0; index < this.net.ActivatingNodes.Count; ++index)
            {
                link1.sourceNode = -1;
                link1.weight     = 0.0;
                this.net.ActivatingNodes[index].links.Add(link1);
            }
            if (Substrates.param.Normalize)
            {
                double num1 = 1.0;
                for (int index1 = 0; index1 < this.net.ActivatingNodes.Count; ++index1)
                {
                    double d = 0.0;
                    for (int index2 = 0; index2 < this.net.ActivatingNodes[index1].links.Count - 1; ++index2)
                    {
                        d += this.net.ActivatingNodes[index1].links[index2].weight * this.net.ActivatingNodes[index1].links[index2].weight;
                    }
                    num1 = Math.Max(num1, Math.Sqrt(d));
                }
                double num2 = Math.Sqrt(num1);
                for (int index1 = 0; index1 < this.net.ActivatingNodes.Count; ++index1)
                {
                    for (int index2 = 0; index2 < this.net.ActivatingNodes[index1].links.Count - 1; ++index2)
                    {
                        DecodedNetworks.Link link2;
                        link2.sourceNode = this.net.ActivatingNodes[index1].links[index2].sourceNode;
                        link2.weight     = this.net.ActivatingNodes[index1].links[index2].weight / num2;
                        this.net.ActivatingNodes[index1].links[index2] = link2;
                    }
                }
            }
            return(this.net);
        }
Example #12
0
 public void GenerateLinks(LinkGen linkGen)
 {
     linkGen(this.sub);
     this.net = DecodedNetworks.DecodeGenome(this.sub);
 }