public static List <NodeMx <int> > BFS(GraphMx <int> G, int startNode)
        {
            List <NodeMx <int> > foundNodes = new List <NodeMx <int> >();

            Queue exploredNodes = new Queue();

            exploredNodes.Enqueue(G.nodes[startNode]);
            G.nodes[startNode].isVisited = true;

            while (exploredNodes.Count != 0)
            {
                NodeMx <int> v = (NodeMx <int>)exploredNodes.Dequeue();
                foundNodes.Add(v);
                for (int n = 0; n < v.nodeEdges.Count; n++)
                {
                    NodeMx <int> w = v.nodeEdges[n].nodes[1];
                    if (w.isVisited == false)
                    {
                        w.isVisited = true;
                        exploredNodes.Enqueue(w);
                    }
                }
            }
            return(foundNodes);
        }
        static void Main(string[] args)
        {
            GraphMx <int> G = createTestGraph();

            Debug.WriteLine("Node Count: " + G.nodeCount);
            Debug.WriteLine("Edge Count: " + G.edgeCount);
            Debug.WriteLine(G.ToString());

            List <NodeMx <int> >[] paths;

            double[] shortestPaths = DijkstraShortestPath(G, 5, out paths);

            int a = 4;
        }
        public static List <NodeMx <int> > DFS(GraphMx <int> G, int startNode)
        {
            List <NodeMx <int> > foundNodes = new List <NodeMx <int> >();

            NodeMx <int> s = G.nodes[startNode];

            s.isVisited = true;
            foundNodes.Add(s);

            for (int n = 0; n < s.nodeEdges.Count; n++)
            {
                NodeMx <int> v = s.nodeEdges[n].nodes[1];
                if (v.isVisited == false)
                {
                    v.isVisited = true;
                    List <NodeMx <int> > foundNodesTemp = DFS(G, v.identifier);
                    foundNodes.AddRange(foundNodesTemp);
                }
            }

            return(foundNodes);
        }
        public static GraphMx <int> createTestGraph()
        {
            GraphMx <int> G = new GraphMx <int>();

            for (int n = 0; n < 10; n++)
            {
                G.addNode(1);
            }

            G.addDirectedConnection(G.nodes[0], G.nodes[1], 1);
            G.addDirectedConnection(G.nodes[0], G.nodes[3], 4);

            G.addDirectedConnection(G.nodes[1], G.nodes[2], 2);
            G.addDirectedConnection(G.nodes[1], G.nodes[4], 3);
            G.addDirectedConnection(G.nodes[1], G.nodes[5], 3);
            G.addDirectedConnection(G.nodes[1], G.nodes[6], 4);

            G.addDirectedConnection(G.nodes[2], G.nodes[4], 3);

            G.addDirectedConnection(G.nodes[3], G.nodes[4], 5);

            G.addDirectedConnection(G.nodes[4], G.nodes[5], 3);
            G.addDirectedConnection(G.nodes[4], G.nodes[7], 1);

            G.addDirectedConnection(G.nodes[5], G.nodes[6], 2);
            G.addDirectedConnection(G.nodes[5], G.nodes[7], 1);

            G.addDirectedConnection(G.nodes[6], G.nodes[8], 2);
            G.addDirectedConnection(G.nodes[6], G.nodes[9], 3);

            G.addDirectedConnection(G.nodes[7], G.nodes[9], 7);

            G.addDirectedConnection(G.nodes[8], G.nodes[9], 4);



            return(G);
        }
        public static double[] DijkstraShortestPath(GraphMx <int> G, int S, out List <NodeMx <int> >[] paths)
        {
            double[] shortestPaths = new double[G.nodeCount];
            paths = new List <NodeMx <int> > [G.nodeCount];

            //Set all the initials shortest paths to basically infinity and then reassign them to an
            //initial value of -1 for the nodes that are reachable
            for (int n = 0; n < shortestPaths.Length; n++)
            {
                shortestPaths[n] = Double.MaxValue;
            }

            //First we need to figure out which nodes arent reachable from out starting node S.
            List <NodeMx <int> > ReachableNodes = BFS(G, S);

            for (int n = 0; n < ReachableNodes.Count; n++)
            {
                shortestPaths[ReachableNodes[n].identifier] = -1;
            }

            //During the process of the breadth first search (BFS) we will have set the "isVisited" flag to true
            //for each node which we now need to undo
            for (int n = 0; n < G.nodeCount; n++)
            {
                G.nodes[n].isVisited = false;
            }

            //Initialize the paths to unreachable nodes as null
            for (int n = 0; n < G.nodeCount; n++)
            {
                if (shortestPaths[n] > -1)
                {
                    paths[n] = null;
                }
                else
                {
                    paths[n] = new List <NodeMx <int> >();
                    paths[n].Add(G.nodes[S]);
                }
            }

            //Initialize our explored nodes with our starting node
            List <NodeMx <int> > exploredNodes = new List <NodeMx <int> >();

            exploredNodes.Add(G.nodes[S]);
            G.nodes[S].isVisited = true;
            shortestPaths[S]     = 0;


            while (exploredNodes.Count < ReachableNodes.Count)
            {
                //For each node we have explored
                List <EdgeMx <int> > edgesToConsider = new List <EdgeMx <int> >();
                for (int n = 0; n < exploredNodes.Count; n++)
                {
                    NodeMx <int> tempNodeTail = exploredNodes[n];

                    //Find all of its edges in the region which we have not yet explored
                    for (int m = 0; m < tempNodeTail.nodeEdges.Count; m++)
                    {
                        NodeMx <int> tempNodeHead = tempNodeTail.nodeEdges[m].nodes[1];
                        if (tempNodeHead.isVisited == false)
                        {
                            edgesToConsider.Add(tempNodeTail.nodeEdges[m]);
                        }
                    }
                }

                //Now that we have the list of candidate edges we need to compute the Dijkstra criteria for each edge
                EdgeMx <int> nextEdge   = edgesToConsider[0];
                double       DijstraMin = Double.MaxValue;
                double       tempDijkstra;
                for (int n = 0; n < edgesToConsider.Count; n++)
                {
                    tempDijkstra = shortestPaths[edgesToConsider[n].nodes[0].identifier] + edgesToConsider[n].weight;
                    if (tempDijkstra < DijstraMin)
                    {
                        DijstraMin = tempDijkstra;
                        nextEdge   = edgesToConsider[n];
                    }
                }

                //Now that we have found the edge that minimizes the Dijkstra criteria we will add the node at the
                //head of the edge to the list of explored nodes and update its shortest path length and shortest
                //path in our other variables
                NodeMx <int> nodeToAdd = nextEdge.nodes[1];
                nodeToAdd.isVisited = true;
                exploredNodes.Add(nodeToAdd);

                //The shortest path of the node we are going to add is equal to the shortest path of the node from which we
                //came from plus the weight of the edge
                shortestPaths[nodeToAdd.identifier] = shortestPaths[nextEdge.nodes[0].identifier] + nextEdge.weight;
                List <NodeMx <int> > pathUptillNow = paths[nextEdge.nodes[0].identifier];
                for (int n = 1; n < pathUptillNow.Count; n++)
                {
                    paths[nodeToAdd.identifier].Add(pathUptillNow[n]);
                }
                paths[nodeToAdd.identifier].Add(nodeToAdd);
            }

            return(shortestPaths);
        }