/// <summary> /// Normal (Gaussian) inverse cumulative distribution function. /// </summary> /// /// <remarks> /// <para> /// For small arguments <c>0 < y < exp(-2)</c>, the program computes <c>z = /// sqrt( -2.0 * log(y) )</c>; then the approximation is <c>x = z - log(z)/z - /// (1/z) P(1/z) / Q(1/z)</c>.</para> /// <para> /// There are two rational functions P/Q, one for <c>0 < y < exp(-32)</c> and /// the other for <c>y</c> up to <c>exp(-2)</c>. For larger arguments, <c>w = y - 0.5</c>, /// and <c>x/sqrt(2pi) = w + w^3 * R(w^2)/S(w^2))</c>.</para> /// </remarks> /// /// <returns> /// Returns the value, <c>x</c>, for which the area under the Normal (Gaussian) /// probability density function (integrated from minus infinity to <c>x</c>) is /// equal to the argument <c>y</c> (assumes mean is zero, variance is one). /// </returns> /// public static double Inverse(double y0) { if (y0 <= 0.0) { if (y0 == 0) { return(Double.NegativeInfinity); } throw new ArgumentOutOfRangeException("y0"); } if (y0 >= 1.0) { if (y0 == 1) { return(Double.PositiveInfinity); } throw new ArgumentOutOfRangeException("y0"); } double s2pi = Math.Sqrt(2.0 * Math.PI); int code = 1; double y = y0; double x; if (y > 0.8646647167633873) { y = 1.0 - y; code = 0; } if (y > 0.1353352832366127) { y -= 0.5; double y2 = y * y; x = y + y * ((y2 * Polynomial.Evaluate(y2, inverse_P0, 4)) / Polynomial.EvaluateSpecial(y2, inverse_Q0, 8)); x *= s2pi; return(x); } x = Math.Sqrt(-2.0 * Math.Log(y)); double x0 = x - Math.Log(x) / x; double z = 1.0 / x; double x1; if (x < 8.0) { x1 = (z * Polynomial.Evaluate(z, inverse_P1, 8)) / Polynomial.EvaluateSpecial(z, inverse_Q1, 8); } else { x1 = (z * Polynomial.Evaluate(z, inverse_P2, 8)) / Polynomial.EvaluateSpecial(z, inverse_Q2, 8); } x = x0 - x1; if (code != 0) { x = -x; } return(x); }