// Update is called once per frame void Update() { if (webCamTextureToMatHelper.IsPlaying() && webCamTextureToMatHelper.DidUpdateThisFrame()) { Mat rgbaMat = webCamTextureToMatHelper.GetMat(); if (net == null) { Imgproc.putText(rgbaMat, "model file is not loaded.", new Point(5, rgbaMat.rows() - 30), Imgproc.FONT_HERSHEY_SIMPLEX, 0.7, new Scalar(255, 255, 255, 255), 2, Imgproc.LINE_AA, false); Imgproc.putText(rgbaMat, "Please read console message.", new Point(5, rgbaMat.rows() - 10), Imgproc.FONT_HERSHEY_SIMPLEX, 0.7, new Scalar(255, 255, 255, 255), 2, Imgproc.LINE_AA, false); } else { Imgproc.cvtColor(rgbaMat, bgrMat, Imgproc.COLOR_RGBA2BGR); // Create a 4D blob from a frame. Size inpSize = new Size(inpWidth > 0 ? inpWidth : bgrMat.cols(), inpHeight > 0 ? inpHeight : bgrMat.rows()); Mat blob = Dnn.blobFromImage(bgrMat, scale, inpSize, mean, swapRB, false); // Run a model. net.setInput(blob); if (net.getLayer(new DictValue(0)).outputNameToIndex("im_info") != -1) { // Faster-RCNN or R-FCN Imgproc.resize(bgrMat, bgrMat, inpSize); Mat imInfo = new Mat(1, 3, CvType.CV_32FC1); imInfo.put(0, 0, new float[] { (float)inpSize.height, (float)inpSize.width, 1.6f }); net.setInput(imInfo, "im_info"); } TickMeter tm = new TickMeter(); tm.start(); List <Mat> outs = new List <Mat>(); net.forward(outs, outBlobNames); tm.stop(); //Debug.Log ("Inference time, ms: " + tm.getTimeMilli ()); postprocess(rgbaMat, outs, net); for (int i = 0; i < outs.Count; i++) { outs[i].Dispose(); } blob.Dispose(); } Utils.fastMatToTexture2D(rgbaMat, texture); } }
protected virtual void Process(Mat img) { Mat inputBlob = PreProcess(img); TickMeter tm = new TickMeter(); tm.start(); List <Mat> outputBlobs = Predict(inputBlob); tm.stop(); PostProcess(img, outputBlobs); for (int i = 0; i < outputBlobs.Count; i++) { outputBlobs[i].Dispose(); } inputBlob.Dispose(); }
// Use this for initialization void Run() { //if true, The error log of the Native side OpenCV will be displayed on the Unity Editor Console. Utils.setDebugMode(true); if (!string.IsNullOrEmpty(classes)) { classNames = readClassNames(classes_filepath); if (classNames == null) { Debug.LogError(classes_filepath + " is not loaded. Please see \"StreamingAssets/dnn/setup_dnn_module.pdf\". "); } } else if (classesList.Count > 0) { classNames = classesList; } Mat img = Imgcodecs.imread(input_filepath); if (img.empty()) { Debug.LogError(input_filepath + " is not loaded. Please see \"StreamingAssets/dnn/setup_dnn_module.pdf\". "); img = new Mat(424, 640, CvType.CV_8UC3, new Scalar(0, 0, 0)); } //Adust Quad.transform.localScale. gameObject.transform.localScale = new Vector3(img.width(), img.height(), 1); Debug.Log("Screen.width " + Screen.width + " Screen.height " + Screen.height + " Screen.orientation " + Screen.orientation); float imageWidth = img.width(); float imageHeight = img.height(); float widthScale = (float)Screen.width / imageWidth; float heightScale = (float)Screen.height / imageHeight; if (widthScale < heightScale) { Camera.main.orthographicSize = (imageWidth * (float)Screen.height / (float)Screen.width) / 2; } else { Camera.main.orthographicSize = imageHeight / 2; } Net net = null; if (string.IsNullOrEmpty(config_filepath) || string.IsNullOrEmpty(model_filepath)) { Debug.LogError(config_filepath + " or " + model_filepath + " is not loaded. Please see \"StreamingAssets/dnn/setup_dnn_module.pdf\". "); } else { //! [Initialize network] net = Dnn.readNet(model_filepath, config_filepath); //! [Initialize network] } if (net == null) { Imgproc.putText(img, "model file is not loaded.", new Point(5, img.rows() - 30), Imgproc.FONT_HERSHEY_SIMPLEX, 0.7, new Scalar(255, 255, 255), 2, Imgproc.LINE_AA, false); Imgproc.putText(img, "Please read console message.", new Point(5, img.rows() - 10), Imgproc.FONT_HERSHEY_SIMPLEX, 0.7, new Scalar(255, 255, 255), 2, Imgproc.LINE_AA, false); } else { outBlobNames = getOutputsNames(net); //for (int i = 0; i < outBlobNames.Count; i++) //{ // Debug.Log("names [" + i + "] " + outBlobNames[i]); //} outBlobTypes = getOutputsTypes(net); //for (int i = 0; i < outBlobTypes.Count; i++) //{ // Debug.Log("types [" + i + "] " + outBlobTypes[i]); //} // Create a 4D blob from a frame. Size inpSize = new Size(inpWidth > 0 ? inpWidth : img.cols(), inpHeight > 0 ? inpHeight : img.rows()); Mat blob = Dnn.blobFromImage(img, scale, inpSize, mean, swapRB, false); // Run a model. net.setInput(blob); if (net.getLayer(new DictValue(0)).outputNameToIndex("im_info") != -1) { // Faster-RCNN or R-FCN Imgproc.resize(img, img, inpSize); Mat imInfo = new Mat(1, 3, CvType.CV_32FC1); imInfo.put(0, 0, new float[] { (float)inpSize.height, (float)inpSize.width, 1.6f }); net.setInput(imInfo, "im_info"); } TickMeter tm = new TickMeter(); tm.start(); List <Mat> outs = new List <Mat>(); net.forward(outs, outBlobNames); tm.stop(); Debug.Log("Inference time, ms: " + tm.getTimeMilli()); postprocess(img, outs, net); for (int i = 0; i < outs.Count; i++) { outs[i].Dispose(); } blob.Dispose(); net.Dispose(); } Imgproc.cvtColor(img, img, Imgproc.COLOR_BGR2RGB); Texture2D texture = new Texture2D(img.cols(), img.rows(), TextureFormat.RGBA32, false); Utils.matToTexture2D(img, texture); gameObject.GetComponent <Renderer>().material.mainTexture = texture; Utils.setDebugMode(false); }
// Use this for initialization void Run() { //if true, The error log of the Native side OpenCV will be displayed on the Unity Editor Console. Utils.setDebugMode(true); Mat img = Imgcodecs.imread(dnn004545_jpg_filepath); #if !UNITY_WSA_10_0 if (img.empty()) { Debug.LogError("dnn/004545.jpg is not loaded.The image file can be downloaded here: \"https://github.com/chuanqi305/MobileNet-SSD/blob/master/images/004545.jpg\".Please copy to \"Assets/StreamingAssets/dnn/\" folder. "); img = new Mat(375, 500, CvType.CV_8UC3, new Scalar(0, 0, 0)); } #endif //Adust Quad.transform.localScale. gameObject.transform.localScale = new Vector3(img.width(), img.height(), 1); Debug.Log("Screen.width " + Screen.width + " Screen.height " + Screen.height + " Screen.orientation " + Screen.orientation); float imageWidth = img.width(); float imageHeight = img.height(); float widthScale = (float)Screen.width / imageWidth; float heightScale = (float)Screen.height / imageHeight; if (widthScale < heightScale) { Camera.main.orthographicSize = (imageWidth * (float)Screen.height / (float)Screen.width) / 2; } else { Camera.main.orthographicSize = imageHeight / 2; } Net net = null; if (string.IsNullOrEmpty(MobileNetSSD_deploy_caffemodel_filepath) || string.IsNullOrEmpty(MobileNetSSD_deploy_prototxt_filepath)) { Debug.LogError("model file is not loaded.The model and prototxt file can be downloaded here: \"https://github.com/chuanqi305/MobileNet-SSD\".Please copy to “Assets/StreamingAssets/dnn/” folder. "); } else { net = Dnn.readNetFromCaffe(MobileNetSSD_deploy_prototxt_filepath, MobileNetSSD_deploy_caffemodel_filepath); } if (net == null) { Imgproc.putText(img, "model file is not loaded.", new Point(5, img.rows() - 30), Core.FONT_HERSHEY_SIMPLEX, 0.7, new Scalar(255, 255, 255), 2, Imgproc.LINE_AA, false); Imgproc.putText(img, "Please read console message.", new Point(5, img.rows() - 10), Core.FONT_HERSHEY_SIMPLEX, 0.7, new Scalar(255, 255, 255), 2, Imgproc.LINE_AA, false); } else { Mat blob = Dnn.blobFromImage(img, inScaleFactor, new Size(inWidth, inHeight), new Scalar(meanVal, meanVal, meanVal), false, false); net.setInput(blob); TickMeter tm = new TickMeter(); tm.start(); Mat prob = net.forward(); prob = prob.reshape(1, (int)prob.total() / 7); tm.stop(); Debug.Log("Inference time, ms: " + tm.getTimeMilli()); float[] data = new float[7]; float confidenceThreshold = 0.2f; for (int i = 0; i < prob.rows(); i++) { prob.get(i, 0, data); float confidence = data [2]; if (confidence > confidenceThreshold) { int class_id = (int)(data [1]); float left = data [3] * img.cols(); float top = data [4] * img.rows(); float right = data [5] * img.cols(); float bottom = data [6] * img.rows(); Debug.Log("class_id: " + class_id); Debug.Log("Confidence: " + confidence); Debug.Log(" " + left + " " + top + " " + right + " " + bottom); Imgproc.rectangle(img, new Point(left, top), new Point(right, bottom), new Scalar(0, 255, 0), 2); string label = classNames [class_id] + ": " + confidence; int[] baseLine = new int[1]; Size labelSize = Imgproc.getTextSize(label, Core.FONT_HERSHEY_SIMPLEX, 0.5, 1, baseLine); top = Mathf.Max(top, (float)labelSize.height); Imgproc.rectangle(img, new Point(left, top), new Point(left + labelSize.width, top + labelSize.height + baseLine [0]), new Scalar(255, 255, 255), Core.FILLED); Imgproc.putText(img, label, new Point(left, top + labelSize.height), Core.FONT_HERSHEY_SIMPLEX, 0.5, new Scalar(0, 0, 0)); } } prob.Dispose(); } Imgproc.cvtColor(img, img, Imgproc.COLOR_BGR2RGB); Texture2D texture = new Texture2D(img.cols(), img.rows(), TextureFormat.RGBA32, false); Utils.matToTexture2D(img, texture); gameObject.GetComponent <Renderer> ().material.mainTexture = texture; Utils.setDebugMode(false); }
// Use this for initialization void Run() { //if true, The error log of the Native side OpenCV will be displayed on the Unity Editor Console. Utils.setDebugMode(true); List <string> classNames = readClassNames(coco_names_filepath); #if !UNITY_WSA_10_0 if (classNames == null) { Debug.LogError("class names list file is not loaded.The model and class names list can be downloaded here: \"https://github.com/pjreddie/darknet/tree/master/data/coco.names\".Please copy to “Assets/StreamingAssets/dnn/” folder. "); } #endif Mat img = Imgcodecs.imread(person_jpg_filepath); #if !UNITY_WSA_10_0 if (img.empty()) { Debug.LogError("dnn/person.jpg is not loaded.The image file can be downloaded here: \"https://github.com/pjreddie/darknet/blob/master/data/person.jpg\".Please copy to \"Assets/StreamingAssets/dnn/\" folder. "); img = new Mat(424, 640, CvType.CV_8UC3, new Scalar(0, 0, 0)); } #endif //Adust Quad.transform.localScale. gameObject.transform.localScale = new Vector3(img.width(), img.height(), 1); Debug.Log("Screen.width " + Screen.width + " Screen.height " + Screen.height + " Screen.orientation " + Screen.orientation); float imageWidth = img.width(); float imageHeight = img.height(); float widthScale = (float)Screen.width / imageWidth; float heightScale = (float)Screen.height / imageHeight; if (widthScale < heightScale) { Camera.main.orthographicSize = (imageWidth * (float)Screen.height / (float)Screen.width) / 2; } else { Camera.main.orthographicSize = imageHeight / 2; } Net net = null; if (string.IsNullOrEmpty(tiny_yolo_cfg_filepath) || string.IsNullOrEmpty(tiny_yolo_weights_filepath)) { Debug.LogError("model file is not loaded. the cfg-file and weights-file can be downloaded here: https://github.com/pjreddie/darknet/blob/master/cfg/tiny-yolo.cfg and https://pjreddie.com/media/files/tiny-yolo.weights. Please copy to “Assets/StreamingAssets/dnn/” folder. "); } else { //! [Initialize network] net = Dnn.readNetFromDarknet(tiny_yolo_cfg_filepath, tiny_yolo_weights_filepath); //! [Initialize network] } if (net == null) { Imgproc.putText(img, "model file is not loaded.", new Point(5, img.rows() - 30), Core.FONT_HERSHEY_SIMPLEX, 0.7, new Scalar(255, 255, 255), 2, Imgproc.LINE_AA, false); Imgproc.putText(img, "Please read console message.", new Point(5, img.rows() - 10), Core.FONT_HERSHEY_SIMPLEX, 0.7, new Scalar(255, 255, 255), 2, Imgproc.LINE_AA, false); } else { //! [Resizing without keeping aspect ratio] Mat resized = new Mat(); Imgproc.resize(img, resized, new Size(network_width, network_height)); //! [Resizing without keeping aspect ratio] //! [Prepare blob] Mat inputBlob = Dnn.blobFromImage(resized, 1 / 255.0, new Size(), new Scalar(0), true, true); //Convert Mat to batch of images //! [Prepare blob] //! [Set input blob] net.setInput(inputBlob, "data"); //set the network input //! [Set input blob] TickMeter tm = new TickMeter(); tm.start(); //! [Make forward pass] Mat detectionMat = net.forward("detection_out"); //compute output //! [Make forward pass] tm.stop(); Debug.Log("Inference time, ms: " + tm.getTimeMilli()); Debug.Log("detectionMat.ToString(): " + detectionMat.ToString()); float[] position = new float[5]; float[] confidences = new float[80]; float confidenceThreshold = 0.24f; for (int i = 0; i < detectionMat.rows(); i++) { detectionMat.get(i, 0, position); detectionMat.get(i, 5, confidences); int maxIdx = confidences.Select((val, idx) => new { V = val, I = idx }).Aggregate((max, working) => (max.V > working.V) ? max : working).I; float confidence = confidences [maxIdx]; if (confidence > confidenceThreshold) { float x = position [0]; float y = position [1]; float width = position [2]; float height = position [3]; int xLeftBottom = (int)((x - width / 2) * img.cols()); int yLeftBottom = (int)((y - height / 2) * img.rows()); int xRightTop = (int)((x + width / 2) * img.cols()); int yRightTop = (int)((y + height / 2) * img.rows()); Debug.Log("confidence: " + confidence); Debug.Log(" " + xLeftBottom + " " + yLeftBottom + " " + xRightTop + " " + yRightTop); Imgproc.rectangle(img, new Point(xLeftBottom, yLeftBottom), new Point(xRightTop, yRightTop), new Scalar(0, 255, 0), 2); if (maxIdx < classNames.Count) { string label = classNames [maxIdx] + ": " + confidence; int[] baseLine = new int[1]; Size labelSize = Imgproc.getTextSize(label, Core.FONT_HERSHEY_SIMPLEX, 0.5, 1, baseLine); Imgproc.rectangle(img, new Point(xLeftBottom, yLeftBottom), new Point(xLeftBottom + labelSize.width, yLeftBottom + labelSize.height + baseLine [0]), new Scalar(255, 255, 255), Core.FILLED); Imgproc.putText(img, label, new Point(xLeftBottom, yLeftBottom + labelSize.height), Core.FONT_HERSHEY_SIMPLEX, 0.5, new Scalar(0, 0, 0)); } } } } Imgproc.cvtColor(img, img, Imgproc.COLOR_BGR2RGB); Texture2D texture = new Texture2D(img.cols(), img.rows(), TextureFormat.RGBA32, false); Utils.matToTexture2D(img, texture); gameObject.GetComponent <Renderer> ().material.mainTexture = texture; Utils.setDebugMode(false); }
// Use this for initialization void Start() { //if true, The error log of the Native side OpenCV will be displayed on the Unity Editor Console. Utils.setDebugMode(true); Mat img = Imgcodecs.imread(Utils.getFilePath("dnn/004545.jpg")); #if !UNITY_WSA_10_0 if (img.empty()) { Debug.LogError("dnn/004545.jpg is not loaded.The image file can be downloaded here: \"https://github.com/chuanqi305/MobileNet-SSD/blob/master/images/004545.jpg\".Please copy to \"Assets/StreamingAssets/dnn/\" folder. "); img = new Mat(375, 500, CvType.CV_8UC3, new Scalar(0, 0, 0)); } #endif Size inVideoSize = new Size(img.width(), img.height()); Size cropSize; if (inVideoSize.width / (float)inVideoSize.height > WHRatio) { cropSize = new Size(inVideoSize.height * WHRatio, inVideoSize.height); } else { cropSize = new Size(inVideoSize.width, inVideoSize.width / WHRatio); } OpenCVForUnity.Rect crop = new OpenCVForUnity.Rect(new Point((inVideoSize.width - cropSize.width) / 2, (inVideoSize.height - cropSize.height) / 2), cropSize); Net net = null; string model_filepath = Utils.getFilePath("dnn/MobileNetSSD_deploy.caffemodel"); string prototxt_filepath = Utils.getFilePath("dnn/MobileNetSSD_deploy.prototxt"); if (string.IsNullOrEmpty(model_filepath) || string.IsNullOrEmpty(prototxt_filepath)) { Debug.LogError("model file is not loaded.The model and prototxt file can be downloaded here: \"https://github.com/chuanqi305/MobileNet-SSD\".Please copy to “Assets/StreamingAssets/dnn/” folder. "); } else { net = Dnn.readNetFromCaffe(prototxt_filepath, model_filepath); } if (net == null) { img = new Mat(img, crop); Imgproc.putText(img, "model file is not loaded.", new Point(5, img.rows() - 30), Core.FONT_HERSHEY_SIMPLEX, 0.7, new Scalar(255, 255, 255), 2, Imgproc.LINE_AA, false); Imgproc.putText(img, "Please read console message.", new Point(5, img.rows() - 10), Core.FONT_HERSHEY_SIMPLEX, 0.7, new Scalar(255, 255, 255), 2, Imgproc.LINE_AA, false); } else { Mat blob = Dnn.blobFromImage(img, inScaleFactor, new Size(inWidth, inHeight), new Scalar(meanVal), false, true); net.setInput(blob); TickMeter tm = new TickMeter(); tm.start(); Mat prob = net.forward(); prob = prob.reshape(1, (int)prob.total() / 7); tm.stop(); Debug.Log("Inference time, ms: " + tm.getTimeMilli()); img = new Mat(img, crop); float[] data = new float[7]; float confidenceThreshold = 0.2f; for (int i = 0; i < prob.rows(); i++) { prob.get(i, 0, data); float confidence = data [2]; if (confidence > confidenceThreshold) { int class_id = (int)(data [1]); float xLeftBottom = data [3] * img.cols(); float yLeftBottom = data [4] * img.rows(); float xRightTop = data [5] * img.cols(); float yRightTop = data [6] * img.rows(); Debug.Log("class_id: " + class_id); Debug.Log("Confidence: " + confidence); Debug.Log(" " + xLeftBottom + " " + yLeftBottom + " " + xRightTop + " " + yRightTop); Imgproc.rectangle(img, new Point(xLeftBottom, yLeftBottom), new Point(xRightTop, yRightTop), new Scalar(0, 255, 0), 2); string label = classNames [class_id] + ": " + confidence; int[] baseLine = new int[1]; Size labelSize = Imgproc.getTextSize(label, Core.FONT_HERSHEY_SIMPLEX, 0.5, 1, baseLine); Imgproc.rectangle(img, new Point(xLeftBottom, yLeftBottom), new Point(xLeftBottom + labelSize.width, yLeftBottom + labelSize.height + baseLine [0]), new Scalar(255, 255, 255), Core.FILLED); Imgproc.putText(img, label, new Point(xLeftBottom, yLeftBottom + labelSize.height), Core.FONT_HERSHEY_SIMPLEX, 0.5, new Scalar(0, 0, 0)); } } prob.Dispose(); } Imgproc.cvtColor(img, img, Imgproc.COLOR_BGR2RGB); Texture2D texture = new Texture2D(img.cols(), img.rows(), TextureFormat.RGBA32, false); Utils.matToTexture2D(img, texture); gameObject.GetComponent <Renderer> ().material.mainTexture = texture; Utils.setDebugMode(false); }
// Use this for initialization void Run() { //if true, The error log of the Native side OpenCV will be displayed on the Unity Editor Console. Utils.setDebugMode(true); classNames = readClassNames(classes_filepath); if (classNames == null) { Debug.LogError(classes_filepath + " is not loaded. Please see \"StreamingAssets/dnn/setup_dnn_module.pdf\". "); } classColors = new List <Scalar>(); for (int i = 0; i < classNames.Count; i++) { classColors.Add(new Scalar(UnityEngine.Random.Range(0, 255), UnityEngine.Random.Range(0, 255), UnityEngine.Random.Range(0, 255))); } Mat img = Imgcodecs.imread(image_filepath); if (img.empty()) { Debug.LogError(image_filepath + " is not loaded. Please see \"StreamingAssets/dnn/setup_dnn_module.pdf\". "); img = new Mat(height, width, CvType.CV_8UC3, new Scalar(0, 0, 0)); } //Adust Quad.transform.localScale. gameObject.transform.localScale = new Vector3(img.width(), img.height(), 1); Debug.Log("Screen.width " + Screen.width + " Screen.height " + Screen.height + " Screen.orientation " + Screen.orientation); float imageWidth = img.width(); float imageHeight = img.height(); float widthScale = (float)Screen.width / imageWidth; float heightScale = (float)Screen.height / imageHeight; if (widthScale < heightScale) { Camera.main.orthographicSize = (imageWidth * (float)Screen.height / (float)Screen.width) / 2; } else { Camera.main.orthographicSize = imageHeight / 2; } Net net = null; if (string.IsNullOrEmpty(model_filepath) || string.IsNullOrEmpty(config_filepath)) { Debug.LogError(model_filepath + " or " + config_filepath + " is not loaded. Please see \"StreamingAssets/dnn/setup_dnn_module.pdf\". "); } else { net = Dnn.readNetFromTensorflow(model_filepath, config_filepath); } if (net == null) { Imgproc.putText(img, "model file is not loaded.", new Point(5, img.rows() - 30), Imgproc.FONT_HERSHEY_SIMPLEX, 0.7, new Scalar(255, 255, 255), 2, Imgproc.LINE_AA, false); Imgproc.putText(img, "Please read console message.", new Point(5, img.rows() - 10), Imgproc.FONT_HERSHEY_SIMPLEX, 0.7, new Scalar(255, 255, 255), 2, Imgproc.LINE_AA, false); } else { float frameW = img.cols(); float frameH = img.rows(); // Create a 4D blob from a frame. Mat blob = Dnn.blobFromImage(img, 1.0, new Size(width, height), new Scalar(0, 0, 0), true, false); //Run a model net.setInput(blob); List <Mat> outputBlobs = new List <Mat>(); List <string> outputName = new List <string>(); outputName.Add("detection_out_final"); outputName.Add("detection_masks"); TickMeter tm = new TickMeter(); tm.start(); net.forward(outputBlobs, outputName); tm.stop(); Debug.Log("Inference time, ms: " + tm.getTimeMilli()); Mat boxes = outputBlobs[0]; Mat masks = outputBlobs[1]; //int numClasses = masks.size(1); int numDetections = boxes.size(2); int mask_sizeH = masks.size(2); int mask_sizeW = masks.size(3); float[] box_data = new float[boxes.size(3)]; float[] mask_data = new float[masks.size(2) * masks.size(3)]; for (int i = 0; i < numDetections; i++) { boxes.get(new int[] { 0, 0, i, 0 }, box_data); float score = box_data[2]; if (score > thr) { int classId = (int)box_data[1]; float left = (int)frameW * box_data[3]; float top = (int)frameH * box_data[4]; float right = (int)frameW * box_data[5]; float bottom = (int)frameH * box_data[6]; left = (int)Mathf.Max(0, Mathf.Min(left, frameW - 1)); top = (int)Mathf.Max(0, Mathf.Min(top, frameH - 1)); right = (int)Mathf.Max(0, Mathf.Min(right, frameW - 1)); bottom = (int)Mathf.Max(0, Mathf.Min(bottom, frameH - 1)); masks.get(new int[] { i, classId, 0, 0 }, mask_data); Mat classMask = new Mat(mask_sizeH, mask_sizeW, CvType.CV_32F); classMask.put(0, 0, mask_data); Imgproc.resize(classMask, classMask, new Size(right - left + 1, bottom - top + 1)); Core.compare(classMask, new Scalar(0.5), classMask, Core.CMP_GT); Mat roi = new Mat(img, new OpenCVForUnity.CoreModule.Rect(new Point(left, top), new Point(right + 1, bottom + 1))); Mat coloredRoi = new Mat(roi.size(), CvType.CV_8UC3); Imgproc.rectangle(coloredRoi, new Point(0, 0), new Point(coloredRoi.width(), coloredRoi.height()), classColors[classId], -1); Core.addWeighted(coloredRoi, 0.7, roi, 0.3, 0, coloredRoi); coloredRoi.copyTo(roi, classMask); coloredRoi.Dispose(); classMask.Dispose(); drawPred(classId, score, left, top, right, bottom, img); Debug.Log("classId:" + classId + " cnof:" + score + " l:" + left + " t:" + top + " r:" + right + " b:" + bottom); } } boxes.Dispose(); masks.Dispose(); blob.Dispose(); } Imgproc.cvtColor(img, img, Imgproc.COLOR_BGR2RGB); Texture2D texture = new Texture2D(img.cols(), img.rows(), TextureFormat.RGBA32, false); Utils.matToTexture2D(img, texture); gameObject.GetComponent <Renderer>().material.mainTexture = texture; net.Dispose(); Utils.setDebugMode(false); }
// Use this for initialization void Run() { //if true, The error log of the Native side OpenCV will be displayed on the Unity Editor Console. Utils.setDebugMode(true); Mat img = Imgcodecs.imread(image_filepath, Imgcodecs.IMREAD_COLOR); if (img.empty()) { Debug.LogError(image_filepath + " is not loaded. Please see \"StreamingAssets/dnn/setup_dnn_module.pdf\". "); img = new Mat(368, 368, CvType.CV_8UC3, new Scalar(0, 0, 0)); } //Adust Quad.transform.localScale. gameObject.transform.localScale = new Vector3(img.width(), img.height(), 1); Debug.Log("Screen.width " + Screen.width + " Screen.height " + Screen.height + " Screen.orientation " + Screen.orientation); float imageWidth = img.width(); float imageHeight = img.height(); float widthScale = (float)Screen.width / imageWidth; float heightScale = (float)Screen.height / imageHeight; if (widthScale < heightScale) { Camera.main.orthographicSize = (imageWidth * (float)Screen.height / (float)Screen.width) / 2; } else { Camera.main.orthographicSize = imageHeight / 2; } Net detector = null; Net recognizer = null; if (string.IsNullOrEmpty(detectionmodel_filepath) || string.IsNullOrEmpty(recognitionmodel_filepath)) { Debug.LogError(detectionmodel_filepath + " or " + recognitionmodel_filepath + " is not loaded. Please see \"StreamingAssets/dnn/setup_dnn_module.pdf\". "); } else { detector = Dnn.readNet(detectionmodel_filepath); recognizer = Dnn.readNet(recognitionmodel_filepath); } if (detector == null || recognizer == null) { Imgproc.putText(img, "model file is not loaded.", new Point(5, img.rows() - 30), Imgproc.FONT_HERSHEY_SIMPLEX, 0.7, new Scalar(255, 255, 255), 2, Imgproc.LINE_AA, false); Imgproc.putText(img, "Please read console message.", new Point(5, img.rows() - 10), Imgproc.FONT_HERSHEY_SIMPLEX, 0.7, new Scalar(255, 255, 255), 2, Imgproc.LINE_AA, false); } else { TickMeter tickMeter = new TickMeter(); List <Mat> outs = new List <Mat>(); List <string> outNames = new List <string>(); outNames.Add("feature_fusion/Conv_7/Sigmoid"); outNames.Add("feature_fusion/concat_3"); // Create a 4D blob from a frame. Size inpSize = new Size(inpWidth > 0 ? inpWidth : img.cols(), inpHeight > 0 ? inpHeight : img.rows()); Mat blob = Dnn.blobFromImage(img, 1.0, inpSize, new Scalar(123.68, 116.78, 103.94), true, false); // blobFromImage(frame, blob, 1.0, Size(inpWidth, inpHeight), Scalar(123.68, 116.78, 103.94), true, false); // Run detection model. detector.setInput(blob); tickMeter.start(); detector.forward(outs, outNames); tickMeter.stop(); Mat scores = outs[0]; Mat geometry = outs[1]; // Decode predicted bounding boxes. List <RotatedRect> boxes = new List <RotatedRect>(); List <float> confidences = new List <float>(); decodeBoundingBoxes(scores, geometry, confThreshold, boxes, confidences); // Apply non-maximum suppression procedure. MatOfRotatedRect boxesMat = new MatOfRotatedRect(boxes.ToArray()); MatOfFloat confidencesMat = new MatOfFloat(confidences.ToArray()); MatOfInt indicesMat = new MatOfInt(); Dnn.NMSBoxesRotated(boxesMat, confidencesMat, confThreshold, nmsThreshold, indicesMat); List <int> indices = indicesMat.toList(); Point ratio = new Point(img.cols() / inpWidth, img.rows() / inpHeight); // Render text. for (int i = 0; i < indices.Count; ++i) { RotatedRect box = boxes[indices[i]]; Point[] vertices = new Point[4]; box.points(vertices); for (int j = 0; j < 4; ++j) { vertices[j].x *= ratio.x; vertices[j].y *= ratio.y; } for (int j = 0; j < 4; ++j) { Imgproc.line(img, vertices[j], vertices[(j + 1) % 4], new Scalar(0, 255, 0), 1); } if (recognizer != null) { Mat cropped = new Mat(); fourPointsTransform(img, vertices, cropped); //Debug.Log(cropped); Imgproc.cvtColor(cropped, cropped, Imgproc.COLOR_BGR2GRAY); Mat blobCrop = Dnn.blobFromImage(cropped, 1.0 / 127.5, new Size(), Scalar.all(127.5)); recognizer.setInput(blobCrop); //Debug.Log(blobCrop); tickMeter.start(); Mat result = recognizer.forward(); tickMeter.stop(); string wordRecognized; decodeText(result, out wordRecognized); Imgproc.putText(img, wordRecognized, vertices[1], Imgproc.FONT_HERSHEY_SIMPLEX, 0.5, new Scalar(255, 0, 0), 1, Imgproc.LINE_AA, false); Debug.Log(wordRecognized); cropped.Dispose(); blobCrop.Dispose(); result.Dispose(); } } Debug.Log("Inference time, ms: " + tickMeter.getTimeMilli()); for (int i = 0; i < outs.Count; i++) { outs[i].Dispose(); } blob.Dispose(); detector.Dispose(); recognizer.Dispose(); } Imgproc.cvtColor(img, img, Imgproc.COLOR_BGR2RGB); Texture2D texture = new Texture2D(img.cols(), img.rows(), TextureFormat.RGBA32, false); Utils.matToTexture2D(img, texture); gameObject.GetComponent <Renderer>().material.mainTexture = texture; Utils.setDebugMode(false); }
// Use this for initialization void Run(Mat img) { //if true, The error log of the Native side OpenCV will be displayed on the Unity Editor Console. Utils.setDebugMode(true); if (!string.IsNullOrEmpty(classes)) { classNames = readClassNames(classes_filepath); #if !UNITY_WSA_10_0 if (classNames == null) { Debug.LogError(classes_filepath + " is not loaded. Please see \"StreamingAssets/dnn/setup_dnn_module.pdf\". "); } #endif } else if (classesList.Count > 0) { classNames = classesList; } Net net = null; if (string.IsNullOrEmpty(config_filepath) || string.IsNullOrEmpty(model_filepath)) { Debug.LogError(config_filepath + " or " + model_filepath + " is not loaded. Please see \"StreamingAssets/dnn/setup_dnn_module.pdf\". "); } else { //! [Initialize network] net = Dnn.readNet(model_filepath, config_filepath); //! [Initialize network] } if (net == null) { Imgproc.putText(img, "model file is not loaded.", new Point(5, img.rows() - 30), Imgproc.FONT_HERSHEY_SIMPLEX, 0.7, new Scalar(255, 255, 255), 2, Imgproc.LINE_AA, false); Imgproc.putText(img, "Please read console message.", new Point(5, img.rows() - 10), Imgproc.FONT_HERSHEY_SIMPLEX, 0.7, new Scalar(255, 255, 255), 2, Imgproc.LINE_AA, false); } else { outBlobNames = getOutputsNames(net); // for (int i = 0; i < outBlobNames.Count; i++) { // Debug.Log ("names [" + i + "] " + outBlobNames [i]); // } outBlobTypes = getOutputsTypes(net); // for (int i = 0; i < outBlobTypes.Count; i++) { // Debug.Log ("types [" + i + "] " + outBlobTypes [i]); // } // Create a 4D blob from a frame. Size inpSize = new Size(inpWidth > 0 ? inpWidth : img.cols(), inpHeight > 0 ? inpHeight : img.rows()); Mat blob = Dnn.blobFromImage(img, scale, inpSize, mean, swapRB, false); // Run a model. net.setInput(blob); if (net.getLayer(new DictValue(0)).outputNameToIndex("im_info") != -1) { // Faster-RCNN or R-FCN Imgproc.resize(img, img, inpSize); Mat imInfo = new Mat(1, 3, CvType.CV_32FC1); imInfo.put(0, 0, new float[] { (float)inpSize.height, (float)inpSize.width, 1.6f }); net.setInput(imInfo, "im_info"); } TickMeter tm = new TickMeter(); tm.start(); List <Mat> outs = new List <Mat>(); net.forward(outs, outBlobNames); tm.stop(); Debug.Log("Inference time, ms: " + tm.getTimeMilli()); postprocess(img, outs, net); for (int i = 0; i < outs.Count; i++) { outs[i].Dispose(); } blob.Dispose(); net.Dispose(); } Utils.setDebugMode(false); }
/// <summary> /// Process /// </summary> /// <returns></returns> private async void Process() { float DOWNSCALE_RATIO = 1.0f; while (true) { // Check TaskCancel if (tokenSource.Token.IsCancellationRequested) { break; } rgbaMat = webCamTextureToMatHelper.GetMat(); // Debug.Log ("rgbaMat.ToString() " + rgbaMat.ToString ()); Mat downScaleRgbaMat = null; DOWNSCALE_RATIO = 1.0f; if (enableDownScale) { downScaleRgbaMat = imageOptimizationHelper.GetDownScaleMat(rgbaMat); DOWNSCALE_RATIO = imageOptimizationHelper.downscaleRatio; } else { downScaleRgbaMat = rgbaMat; DOWNSCALE_RATIO = 1.0f; } Imgproc.cvtColor(downScaleRgbaMat, bgrMat, Imgproc.COLOR_RGBA2BGR); await Task.Run(() => { // detect faces on the downscale image if (!enableSkipFrame || !imageOptimizationHelper.IsCurrentFrameSkipped()) { if (net == null) { Imgproc.putText(rgbaMat, "model file is not loaded.", new Point(5, rgbaMat.rows() - 30), Imgproc.FONT_HERSHEY_SIMPLEX, 0.7, new Scalar(255, 255, 255, 255), 2, Imgproc.LINE_AA, false); Imgproc.putText(rgbaMat, "Please read console message.", new Point(5, rgbaMat.rows() - 10), Imgproc.FONT_HERSHEY_SIMPLEX, 0.7, new Scalar(255, 255, 255, 255), 2, Imgproc.LINE_AA, false); } else { // Create a 4D blob from a frame. Size inpSize = new Size(inpWidth > 0 ? inpWidth : bgrMat.cols(), inpHeight > 0 ? inpHeight : bgrMat.rows()); Mat blob = Dnn.blobFromImage(bgrMat, scale, inpSize, mean, swapRB, false); // Run a model. net.setInput(blob); if (net.getLayer(new DictValue(0)).outputNameToIndex("im_info") != -1) { // Faster-RCNN or R-FCN Imgproc.resize(bgrMat, bgrMat, inpSize); Mat imInfo = new Mat(1, 3, CvType.CV_32FC1); imInfo.put(0, 0, new float[] { (float)inpSize.height, (float)inpSize.width, 1.6f }); net.setInput(imInfo, "im_info"); } TickMeter tm = new TickMeter(); tm.start(); List <Mat> outs = new List <Mat>(); net.forward(outs, outBlobNames); tm.stop(); // Debug.Log ("Inference time, ms: " + tm.getTimeMilli ()); postprocess(bgrMat, outs, net); for (int i = 0; i < outs.Count; i++) { outs[i].Dispose(); } blob.Dispose(); if (enableDownScale) { for (int i = 0; i < _boxesList.Count; ++i) { var rect = _boxesList[i]; _boxesList[i] = new OpenCVForUnity.CoreModule.Rect( (int)(rect.x * DOWNSCALE_RATIO), (int)(rect.y * DOWNSCALE_RATIO), (int)(rect.width * DOWNSCALE_RATIO), (int)(rect.height * DOWNSCALE_RATIO)); } } } //Imgproc.rectangle(rgbaMat, new Point(0, 0), new Point(rgbaMat.width(), rgbaMat.height()), new Scalar(0, 0, 0, 0), -1); MatOfRect boxes = new MatOfRect(); boxes.fromList(_boxesList); MatOfFloat confidences = new MatOfFloat(); confidences.fromList(_confidencesList); MatOfInt indices = new MatOfInt(); Dnn.NMSBoxes(boxes, confidences, confThreshold, nmsThreshold, indices); // Debug.Log ("indices.dump () "+indices.dump ()); // Debug.Log ("indices.ToString () "+indices.ToString()); for (int i = 0; i < indices.total(); ++i) { int idx = (int)indices.get(i, 0)[0]; OpenCVForUnity.CoreModule.Rect box = _boxesList[idx]; drawPred(_classIdsList[idx], _confidencesList[idx], box.x, box.y, box.x + box.width, box.y + box.height, rgbaMat); } indices.Dispose(); boxes.Dispose(); confidences.Dispose(); } }); Utils.fastMatToTexture2D(rgbaMat, texture); Thread.Sleep(10); } }
public void Run() { //if true, The error log of the Native side OpenCV will be displayed on the Unity Editor Console. Utils.setDebugMode(true); classNames = readClassNames(classes_filepath); if (classNames == null) { Debug.LogError(classes_filepath + " is not loaded. Please see \"StreamingAssets/dnn/setup_dnn_module.pdf\". "); } //Mat img = new Mat(imageTex.height, imageTex.width, CvType.); //Utils.texture2DToMat(imageTex, img); Mat img = Imgcodecs.imread(input_filepath); if (img.empty()) { Debug.LogError(input_filepath + " is not loaded. Please see \"StreamingAssets/dnn/setup_dnn_module.pdf\". "); img = new Mat(424, 640, CvType.CV_8UC3, new Scalar(0, 0, 0)); } //Adust Quad.transform.localScale. gameObject.transform.localScale = new Vector3(img.width(), img.height(), 1); Debug.Log("Screen.width " + Screen.width + " Screen.height " + Screen.height + " Screen.orientation " + Screen.orientation); float imageWidth = img.width(); float imageHeight = img.height(); float widthScale = (float)Screen.width / imageWidth; float heightScale = (float)Screen.height / imageHeight; if (widthScale < heightScale) { Camera.main.orthographicSize = (imageWidth * (float)Screen.height / (float)Screen.width) / 2; } else { Camera.main.orthographicSize = imageHeight / 2; } Net net = null; if (string.IsNullOrEmpty(model_filepath) || string.IsNullOrEmpty(config_filepath)) { Debug.LogError(model_filepath + " or " + config_filepath + " is not loaded. Please see \"StreamingAssets/dnn/setup_dnn_module.pdf\". "); } else { net = Dnn.readNetFromTensorflow(model_filepath, config_filepath); } if (net == null) { Imgproc.putText(img, "model file is not loaded.", new Point(5, img.rows() - 30), Imgproc.FONT_HERSHEY_SIMPLEX, 0.7, new Scalar(255, 255, 255), 2, Imgproc.LINE_AA, false); Imgproc.putText(img, "Please read console message.", new Point(5, img.rows() - 10), Imgproc.FONT_HERSHEY_SIMPLEX, 0.7, new Scalar(255, 255, 255), 2, Imgproc.LINE_AA, false); } else { outBlobNames = getOutputsNames(net); outBlobTypes = getOutputsTypes(net); Mat blob = Dnn.blobFromImage(img, 0.007843, new Size(300, 300), new Scalar(127.5, 127.5, 127.5)); net.setInput(blob); TickMeter tm = new TickMeter(); tm.start(); List <Mat> outs = new List <Mat>(); net.forward(outs, outBlobNames); tm.stop(); Debug.Log("Inference time, ms: " + tm.getTimeMilli()); postprocess(img, outs, net); for (int i = 0; i < outs.Count; i++) { outs[i].Dispose(); } blob.Dispose(); net.Dispose(); Imgproc.cvtColor(img, img, Imgproc.COLOR_BGR2RGB); Texture2D texture = new Texture2D(img.cols(), img.rows(), TextureFormat.RGBA32, false); Utils.matToTexture2D(img, texture); gameObject.GetComponent <Renderer>().material.mainTexture = texture; Utils.setDebugMode(false); } }
void ObjectDetection() { // If true, The error log of the Native side OpenCV will be displayed on the Unity Editor Console. Utils.setDebugMode(true); Mat img = Imgcodecs.imread(image); if (img.empty()) { Debug.LogError("Image " + image + " is not loaded."); img = new Mat(424, 640, CvType.CV_8UC3, new Scalar(0, 0, 0)); } Net net = null; if (string.IsNullOrEmpty(cfg) || string.IsNullOrEmpty(weight)) { Debug.LogError(cfg + " or " + weight + " is not loaded."); } else { //load model and config net = Dnn.readNet(weight, cfg); } if (net == null) { Imgproc.putText(img, "model file is not loaded.", new Point(5, img.rows() - 30), Imgproc.FONT_HERSHEY_SIMPLEX, 0.7, new Scalar(255, 255, 255), 2, Imgproc.LINE_AA, false); Imgproc.putText(img, "Please read console message.", new Point(5, img.rows() - 10), Imgproc.FONT_HERSHEY_SIMPLEX, 0.7, new Scalar(255, 255, 255), 2, Imgproc.LINE_AA, false); } else { //setting blob, size can be:320/416/608 //opencv blob setting can check here https://github.com/opencv/opencv/tree/master/samples/dnn#object-detection Mat blob = Dnn.blobFromImage(img, 1.0 / 255, new Size(416, 416), new Scalar(0), false, false); //input data net.setInput(blob); //get output layer name List <string> outNames = net.getUnconnectedOutLayersNames(); //create mats for output layer List <Mat> outs = outNames.Select(_ => new Mat()).ToList(); #region forward model TickMeter tm = new TickMeter(); tm.start(); net.forward(outs, outNames); tm.stop(); Debug.Log("Runtime: " + tm.getTimeMilli() + " ms"); #endregion //get result from all output GetResult(outs, img, threshold, nmsThreshold); } // Show Image Imgproc.cvtColor(img, img, Imgproc.COLOR_BGR2RGB); Texture2D texture = new Texture2D(img.cols(), img.rows(), TextureFormat.RGBA32, false); Utils.matToTexture2D(img, texture); gameObject.GetComponent <Renderer>().material.mainTexture = texture; Utils.setDebugMode(false); }
// Update is called once per frame void Update() { for (int i = 0; i < validTimer.Length; i++) { validTimer[i] -= Time.deltaTime; if (validTimer[i] <= 0.0f) { timerEnded(i); } } switch (ClassID) { case 20: //LCD GUIObject[3].transform.position = Vector3.MoveTowards(GUIObject[3].transform.position, sphere[3].transform.position, Time.deltaTime * speed); break; case 12: //Dog GUIObject[3].transform.position = Vector3.MoveTowards(GUIObject[3].transform.position, sphere[3].transform.position, Time.deltaTime * speed); break; case 9: // Chair GUIObject[2].transform.position = Vector3.MoveTowards(GUIObject[2].transform.position, sphere[2].transform.position, Time.deltaTime * speed); break; case 5: // Bottle GUIObject[1].transform.position = Vector3.MoveTowards(GUIObject[1].transform.position, sphere[1].transform.position, Time.deltaTime * speed); break; case 15: // Civilian GUIObject[0].transform.position = Vector3.MoveTowards(GUIObject[0].transform.position, sphere[0].transform.position, Time.deltaTime * speed); break; default: print("Unknown"); break; } if (webCamTextureToMatHelper.IsPlaying() && webCamTextureToMatHelper.DidUpdateThisFrame()) { Mat rgbaMat = webCamTextureToMatHelper.GetMat(); if (net == null) { Imgproc.putText(rgbaMat, "model file is not loaded.", new Point(5, rgbaMat.rows() - 30), Imgproc.FONT_HERSHEY_SIMPLEX, 0.7, new Scalar(255, 255, 255, 255), 2, Imgproc.LINE_AA, false); Imgproc.putText(rgbaMat, "Please read console message.", new Point(5, rgbaMat.rows() - 10), Imgproc.FONT_HERSHEY_SIMPLEX, 0.7, new Scalar(255, 255, 255, 255), 2, Imgproc.LINE_AA, false); } else { Imgproc.cvtColor(rgbaMat, bgrMat, Imgproc.COLOR_RGBA2BGR); // Create a 4D blob from a frame. Size inpSize = new Size(inpWidth > 0 ? inpWidth : bgrMat.cols(), inpHeight > 0 ? inpHeight : bgrMat.rows()); Mat blob = Dnn.blobFromImage(bgrMat, scale, inpSize, mean, swapRB, false); // Run a model. net.setInput(blob); if (net.getLayer(new DictValue(0)).outputNameToIndex("im_info") != -1) // Faster-RCNN or R-FCN { Imgproc.resize(bgrMat, bgrMat, inpSize); Mat imInfo = new Mat(1, 3, CvType.CV_32FC1); imInfo.put(0, 0, new float[] { (float)inpSize.height, (float)inpSize.width, 1.6f }); net.setInput(imInfo, "im_info"); } TickMeter tm = new TickMeter(); tm.start(); List <Mat> outs = new List <Mat> (); net.forward(outs, outBlobNames); tm.stop(); // Debug.Log ("Inference time, ms: " + tm.getTimeMilli ()); postprocess(rgbaMat, outs, net); for (int i = 0; i < outs.Count; i++) { outs [i].Dispose(); } blob.Dispose(); } Utils.fastMatToTexture2D(rgbaMat, texture); } }