// Update is called once per frame
        void Update()
        {
            if (webCamTextureToMatHelper.IsPlaying() && webCamTextureToMatHelper.DidUpdateThisFrame())
            {
                Mat rgbaMat = webCamTextureToMatHelper.GetMat();

                if (net == null)
                {
                    Imgproc.putText(rgbaMat, "model file is not loaded.", new Point(5, rgbaMat.rows() - 30), Imgproc.FONT_HERSHEY_SIMPLEX, 0.7, new Scalar(255, 255, 255, 255), 2, Imgproc.LINE_AA, false);
                    Imgproc.putText(rgbaMat, "Please read console message.", new Point(5, rgbaMat.rows() - 10), Imgproc.FONT_HERSHEY_SIMPLEX, 0.7, new Scalar(255, 255, 255, 255), 2, Imgproc.LINE_AA, false);
                }
                else
                {
                    Imgproc.cvtColor(rgbaMat, bgrMat, Imgproc.COLOR_RGBA2BGR);

                    // Create a 4D blob from a frame.
                    Size inpSize = new Size(inpWidth > 0 ? inpWidth : bgrMat.cols(),
                                            inpHeight > 0 ? inpHeight : bgrMat.rows());
                    Mat blob = Dnn.blobFromImage(bgrMat, scale, inpSize, mean, swapRB, false);


                    // Run a model.
                    net.setInput(blob);

                    if (net.getLayer(new DictValue(0)).outputNameToIndex("im_info") != -1)
                    {  // Faster-RCNN or R-FCN
                        Imgproc.resize(bgrMat, bgrMat, inpSize);
                        Mat imInfo = new Mat(1, 3, CvType.CV_32FC1);
                        imInfo.put(0, 0, new float[] {
                            (float)inpSize.height,
                            (float)inpSize.width,
                            1.6f
                        });
                        net.setInput(imInfo, "im_info");
                    }


                    TickMeter tm = new TickMeter();
                    tm.start();

                    List <Mat> outs = new List <Mat>();
                    net.forward(outs, outBlobNames);

                    tm.stop();
                    //Debug.Log ("Inference time, ms: " + tm.getTimeMilli ());


                    postprocess(rgbaMat, outs, net);

                    for (int i = 0; i < outs.Count; i++)
                    {
                        outs[i].Dispose();
                    }
                    blob.Dispose();
                }

                Utils.fastMatToTexture2D(rgbaMat, texture);
            }
        }
    protected virtual void Process(Mat img)
    {
        Mat inputBlob = PreProcess(img);


        TickMeter tm = new TickMeter();

        tm.start();


        List <Mat> outputBlobs = Predict(inputBlob);

        tm.stop();


        PostProcess(img, outputBlobs);

        for (int i = 0; i < outputBlobs.Count; i++)
        {
            outputBlobs[i].Dispose();
        }
        inputBlob.Dispose();
    }
Ejemplo n.º 3
0
        // Use this for initialization
        void Run()
        {
            //if true, The error log of the Native side OpenCV will be displayed on the Unity Editor Console.
            Utils.setDebugMode(true);

            if (!string.IsNullOrEmpty(classes))
            {
                classNames = readClassNames(classes_filepath);
                if (classNames == null)
                {
                    Debug.LogError(classes_filepath + " is not loaded. Please see \"StreamingAssets/dnn/setup_dnn_module.pdf\". ");
                }
            }
            else if (classesList.Count > 0)
            {
                classNames = classesList;
            }

            Mat img = Imgcodecs.imread(input_filepath);

            if (img.empty())
            {
                Debug.LogError(input_filepath + " is not loaded. Please see \"StreamingAssets/dnn/setup_dnn_module.pdf\". ");
                img = new Mat(424, 640, CvType.CV_8UC3, new Scalar(0, 0, 0));
            }


            //Adust Quad.transform.localScale.
            gameObject.transform.localScale = new Vector3(img.width(), img.height(), 1);
            Debug.Log("Screen.width " + Screen.width + " Screen.height " + Screen.height + " Screen.orientation " + Screen.orientation);

            float imageWidth  = img.width();
            float imageHeight = img.height();

            float widthScale  = (float)Screen.width / imageWidth;
            float heightScale = (float)Screen.height / imageHeight;

            if (widthScale < heightScale)
            {
                Camera.main.orthographicSize = (imageWidth * (float)Screen.height / (float)Screen.width) / 2;
            }
            else
            {
                Camera.main.orthographicSize = imageHeight / 2;
            }


            Net net = null;

            if (string.IsNullOrEmpty(config_filepath) || string.IsNullOrEmpty(model_filepath))
            {
                Debug.LogError(config_filepath + " or " + model_filepath + " is not loaded. Please see \"StreamingAssets/dnn/setup_dnn_module.pdf\". ");
            }
            else
            {
                //! [Initialize network]
                net = Dnn.readNet(model_filepath, config_filepath);
                //! [Initialize network]
            }


            if (net == null)
            {
                Imgproc.putText(img, "model file is not loaded.", new Point(5, img.rows() - 30), Imgproc.FONT_HERSHEY_SIMPLEX, 0.7, new Scalar(255, 255, 255), 2, Imgproc.LINE_AA, false);
                Imgproc.putText(img, "Please read console message.", new Point(5, img.rows() - 10), Imgproc.FONT_HERSHEY_SIMPLEX, 0.7, new Scalar(255, 255, 255), 2, Imgproc.LINE_AA, false);
            }
            else
            {
                outBlobNames = getOutputsNames(net);
                //for (int i = 0; i < outBlobNames.Count; i++)
                //{
                //    Debug.Log("names [" + i + "] " + outBlobNames[i]);
                //}

                outBlobTypes = getOutputsTypes(net);
                //for (int i = 0; i < outBlobTypes.Count; i++)
                //{
                //    Debug.Log("types [" + i + "] " + outBlobTypes[i]);
                //}


                // Create a 4D blob from a frame.
                Size inpSize = new Size(inpWidth > 0 ? inpWidth : img.cols(),
                                        inpHeight > 0 ? inpHeight : img.rows());
                Mat blob = Dnn.blobFromImage(img, scale, inpSize, mean, swapRB, false);


                // Run a model.
                net.setInput(blob);

                if (net.getLayer(new DictValue(0)).outputNameToIndex("im_info") != -1)
                {  // Faster-RCNN or R-FCN
                    Imgproc.resize(img, img, inpSize);
                    Mat imInfo = new Mat(1, 3, CvType.CV_32FC1);
                    imInfo.put(0, 0, new float[] {
                        (float)inpSize.height,
                        (float)inpSize.width,
                        1.6f
                    });
                    net.setInput(imInfo, "im_info");
                }


                TickMeter tm = new TickMeter();
                tm.start();


                List <Mat> outs = new List <Mat>();
                net.forward(outs, outBlobNames);


                tm.stop();
                Debug.Log("Inference time, ms: " + tm.getTimeMilli());


                postprocess(img, outs, net);

                for (int i = 0; i < outs.Count; i++)
                {
                    outs[i].Dispose();
                }
                blob.Dispose();
                net.Dispose();
            }


            Imgproc.cvtColor(img, img, Imgproc.COLOR_BGR2RGB);

            Texture2D texture = new Texture2D(img.cols(), img.rows(), TextureFormat.RGBA32, false);

            Utils.matToTexture2D(img, texture);

            gameObject.GetComponent <Renderer>().material.mainTexture = texture;


            Utils.setDebugMode(false);
        }
Ejemplo n.º 4
0
        // Use this for initialization
        void Run()
        {
            //if true, The error log of the Native side OpenCV will be displayed on the Unity Editor Console.
            Utils.setDebugMode(true);


            Mat img = Imgcodecs.imread(dnn004545_jpg_filepath);

            #if !UNITY_WSA_10_0
            if (img.empty())
            {
                Debug.LogError("dnn/004545.jpg is not loaded.The image file can be downloaded here: \"https://github.com/chuanqi305/MobileNet-SSD/blob/master/images/004545.jpg\".Please copy to \"Assets/StreamingAssets/dnn/\" folder. ");
                img = new Mat(375, 500, CvType.CV_8UC3, new Scalar(0, 0, 0));
            }
            #endif


            //Adust Quad.transform.localScale.
            gameObject.transform.localScale = new Vector3(img.width(), img.height(), 1);
            Debug.Log("Screen.width " + Screen.width + " Screen.height " + Screen.height + " Screen.orientation " + Screen.orientation);

            float imageWidth  = img.width();
            float imageHeight = img.height();

            float widthScale  = (float)Screen.width / imageWidth;
            float heightScale = (float)Screen.height / imageHeight;
            if (widthScale < heightScale)
            {
                Camera.main.orthographicSize = (imageWidth * (float)Screen.height / (float)Screen.width) / 2;
            }
            else
            {
                Camera.main.orthographicSize = imageHeight / 2;
            }


            Net net = null;

            if (string.IsNullOrEmpty(MobileNetSSD_deploy_caffemodel_filepath) || string.IsNullOrEmpty(MobileNetSSD_deploy_prototxt_filepath))
            {
                Debug.LogError("model file is not loaded.The model and prototxt file can be downloaded here: \"https://github.com/chuanqi305/MobileNet-SSD\".Please copy to “Assets/StreamingAssets/dnn/” folder. ");
            }
            else
            {
                net = Dnn.readNetFromCaffe(MobileNetSSD_deploy_prototxt_filepath, MobileNetSSD_deploy_caffemodel_filepath);
            }

            if (net == null)
            {
                Imgproc.putText(img, "model file is not loaded.", new Point(5, img.rows() - 30), Core.FONT_HERSHEY_SIMPLEX, 0.7, new Scalar(255, 255, 255), 2, Imgproc.LINE_AA, false);
                Imgproc.putText(img, "Please read console message.", new Point(5, img.rows() - 10), Core.FONT_HERSHEY_SIMPLEX, 0.7, new Scalar(255, 255, 255), 2, Imgproc.LINE_AA, false);
            }
            else
            {
                Mat blob = Dnn.blobFromImage(img, inScaleFactor, new Size(inWidth, inHeight), new Scalar(meanVal, meanVal, meanVal), false, false);

                net.setInput(blob);


                TickMeter tm = new TickMeter();
                tm.start();

                Mat prob = net.forward();
                prob = prob.reshape(1, (int)prob.total() / 7);

                tm.stop();
                Debug.Log("Inference time, ms: " + tm.getTimeMilli());



                float[] data = new float[7];

                float confidenceThreshold = 0.2f;
                for (int i = 0; i < prob.rows(); i++)
                {
                    prob.get(i, 0, data);

                    float confidence = data [2];

                    if (confidence > confidenceThreshold)
                    {
                        int class_id = (int)(data [1]);

                        float left   = data [3] * img.cols();
                        float top    = data [4] * img.rows();
                        float right  = data [5] * img.cols();
                        float bottom = data [6] * img.rows();

                        Debug.Log("class_id: " + class_id);
                        Debug.Log("Confidence: " + confidence);

                        Debug.Log(" " + left
                                  + " " + top
                                  + " " + right
                                  + " " + bottom);

                        Imgproc.rectangle(img, new Point(left, top), new Point(right, bottom),
                                          new Scalar(0, 255, 0), 2);
                        string label     = classNames [class_id] + ": " + confidence;
                        int[]  baseLine  = new int[1];
                        Size   labelSize = Imgproc.getTextSize(label, Core.FONT_HERSHEY_SIMPLEX, 0.5, 1, baseLine);

                        top = Mathf.Max(top, (float)labelSize.height);

                        Imgproc.rectangle(img, new Point(left, top),
                                          new Point(left + labelSize.width, top + labelSize.height + baseLine [0]),
                                          new Scalar(255, 255, 255), Core.FILLED);
                        Imgproc.putText(img, label, new Point(left, top + labelSize.height),
                                        Core.FONT_HERSHEY_SIMPLEX, 0.5, new Scalar(0, 0, 0));
                    }
                }

                prob.Dispose();
            }

            Imgproc.cvtColor(img, img, Imgproc.COLOR_BGR2RGB);

            Texture2D texture = new Texture2D(img.cols(), img.rows(), TextureFormat.RGBA32, false);

            Utils.matToTexture2D(img, texture);

            gameObject.GetComponent <Renderer> ().material.mainTexture = texture;


            Utils.setDebugMode(false);
        }
        // Use this for initialization
        void Run()
        {
            //if true, The error log of the Native side OpenCV will be displayed on the Unity Editor Console.
            Utils.setDebugMode(true);


            List <string> classNames = readClassNames(coco_names_filepath);

            #if !UNITY_WSA_10_0
            if (classNames == null)
            {
                Debug.LogError("class names list file is not loaded.The model and class names list can be downloaded here: \"https://github.com/pjreddie/darknet/tree/master/data/coco.names\".Please copy to “Assets/StreamingAssets/dnn/” folder. ");
            }
            #endif


            Mat img = Imgcodecs.imread(person_jpg_filepath);
            #if !UNITY_WSA_10_0
            if (img.empty())
            {
                Debug.LogError("dnn/person.jpg is not loaded.The image file can be downloaded here: \"https://github.com/pjreddie/darknet/blob/master/data/person.jpg\".Please copy to \"Assets/StreamingAssets/dnn/\" folder. ");
                img = new Mat(424, 640, CvType.CV_8UC3, new Scalar(0, 0, 0));
            }
            #endif


            //Adust Quad.transform.localScale.
            gameObject.transform.localScale = new Vector3(img.width(), img.height(), 1);
            Debug.Log("Screen.width " + Screen.width + " Screen.height " + Screen.height + " Screen.orientation " + Screen.orientation);

            float imageWidth  = img.width();
            float imageHeight = img.height();

            float widthScale  = (float)Screen.width / imageWidth;
            float heightScale = (float)Screen.height / imageHeight;
            if (widthScale < heightScale)
            {
                Camera.main.orthographicSize = (imageWidth * (float)Screen.height / (float)Screen.width) / 2;
            }
            else
            {
                Camera.main.orthographicSize = imageHeight / 2;
            }


            Net net = null;

            if (string.IsNullOrEmpty(tiny_yolo_cfg_filepath) || string.IsNullOrEmpty(tiny_yolo_weights_filepath))
            {
                Debug.LogError("model file is not loaded. the cfg-file and weights-file can be downloaded here: https://github.com/pjreddie/darknet/blob/master/cfg/tiny-yolo.cfg and https://pjreddie.com/media/files/tiny-yolo.weights. Please copy to “Assets/StreamingAssets/dnn/” folder. ");
            }
            else
            {
                //! [Initialize network]
                net = Dnn.readNetFromDarknet(tiny_yolo_cfg_filepath, tiny_yolo_weights_filepath);
                //! [Initialize network]
            }


            if (net == null)
            {
                Imgproc.putText(img, "model file is not loaded.", new Point(5, img.rows() - 30), Core.FONT_HERSHEY_SIMPLEX, 0.7, new Scalar(255, 255, 255), 2, Imgproc.LINE_AA, false);
                Imgproc.putText(img, "Please read console message.", new Point(5, img.rows() - 10), Core.FONT_HERSHEY_SIMPLEX, 0.7, new Scalar(255, 255, 255), 2, Imgproc.LINE_AA, false);
            }
            else
            {
                //! [Resizing without keeping aspect ratio]
                Mat resized = new Mat();
                Imgproc.resize(img, resized, new Size(network_width, network_height));
                //! [Resizing without keeping aspect ratio]

                //! [Prepare blob]
                Mat inputBlob = Dnn.blobFromImage(resized, 1 / 255.0, new Size(), new Scalar(0), true, true);    //Convert Mat to batch of images
                //! [Prepare blob]

                //! [Set input blob]
                net.setInput(inputBlob, "data");                    //set the network input
                //! [Set input blob]


                TickMeter tm = new TickMeter();
                tm.start();

                //! [Make forward pass]
                Mat detectionMat = net.forward("detection_out");    //compute output
                //! [Make forward pass]

                tm.stop();
                Debug.Log("Inference time, ms: " + tm.getTimeMilli());

                Debug.Log("detectionMat.ToString(): " + detectionMat.ToString());

                float[] position    = new float[5];
                float[] confidences = new float[80];

                float confidenceThreshold = 0.24f;
                for (int i = 0; i < detectionMat.rows(); i++)
                {
                    detectionMat.get(i, 0, position);

                    detectionMat.get(i, 5, confidences);

                    int   maxIdx     = confidences.Select((val, idx) => new { V = val, I = idx }).Aggregate((max, working) => (max.V > working.V) ? max : working).I;
                    float confidence = confidences [maxIdx];

                    if (confidence > confidenceThreshold)
                    {
                        float x           = position [0];
                        float y           = position [1];
                        float width       = position [2];
                        float height      = position [3];
                        int   xLeftBottom = (int)((x - width / 2) * img.cols());
                        int   yLeftBottom = (int)((y - height / 2) * img.rows());
                        int   xRightTop   = (int)((x + width / 2) * img.cols());
                        int   yRightTop   = (int)((y + height / 2) * img.rows());

                        Debug.Log("confidence: " + confidence);

                        Debug.Log(" " + xLeftBottom
                                  + " " + yLeftBottom
                                  + " " + xRightTop
                                  + " " + yRightTop);

                        Imgproc.rectangle(img, new Point(xLeftBottom, yLeftBottom), new Point(xRightTop, yRightTop),
                                          new Scalar(0, 255, 0), 2);

                        if (maxIdx < classNames.Count)
                        {
                            string label     = classNames [maxIdx] + ": " + confidence;
                            int[]  baseLine  = new int[1];
                            Size   labelSize = Imgproc.getTextSize(label, Core.FONT_HERSHEY_SIMPLEX, 0.5, 1, baseLine);

                            Imgproc.rectangle(img, new Point(xLeftBottom, yLeftBottom),
                                              new Point(xLeftBottom + labelSize.width, yLeftBottom + labelSize.height + baseLine [0]),
                                              new Scalar(255, 255, 255), Core.FILLED);
                            Imgproc.putText(img, label, new Point(xLeftBottom, yLeftBottom + labelSize.height),
                                            Core.FONT_HERSHEY_SIMPLEX, 0.5, new Scalar(0, 0, 0));
                        }
                    }
                }
            }

            Imgproc.cvtColor(img, img, Imgproc.COLOR_BGR2RGB);

            Texture2D texture = new Texture2D(img.cols(), img.rows(), TextureFormat.RGBA32, false);

            Utils.matToTexture2D(img, texture);

            gameObject.GetComponent <Renderer> ().material.mainTexture = texture;


            Utils.setDebugMode(false);
        }
Ejemplo n.º 6
0
        // Use this for initialization
        void Start()
        {
            //if true, The error log of the Native side OpenCV will be displayed on the Unity Editor Console.
            Utils.setDebugMode(true);


            Mat img = Imgcodecs.imread(Utils.getFilePath("dnn/004545.jpg"));

            #if !UNITY_WSA_10_0
            if (img.empty())
            {
                Debug.LogError("dnn/004545.jpg is not loaded.The image file can be downloaded here: \"https://github.com/chuanqi305/MobileNet-SSD/blob/master/images/004545.jpg\".Please copy to \"Assets/StreamingAssets/dnn/\" folder. ");
                img = new Mat(375, 500, CvType.CV_8UC3, new Scalar(0, 0, 0));
            }
            #endif

            Size inVideoSize = new Size(img.width(), img.height());
            Size cropSize;
            if (inVideoSize.width / (float)inVideoSize.height > WHRatio)
            {
                cropSize = new Size(inVideoSize.height * WHRatio, inVideoSize.height);
            }
            else
            {
                cropSize = new Size(inVideoSize.width, inVideoSize.width / WHRatio);
            }
            OpenCVForUnity.Rect crop = new OpenCVForUnity.Rect(new Point((inVideoSize.width - cropSize.width) / 2, (inVideoSize.height - cropSize.height) / 2), cropSize);


            Net net = null;

            string model_filepath    = Utils.getFilePath("dnn/MobileNetSSD_deploy.caffemodel");
            string prototxt_filepath = Utils.getFilePath("dnn/MobileNetSSD_deploy.prototxt");

            if (string.IsNullOrEmpty(model_filepath) || string.IsNullOrEmpty(prototxt_filepath))
            {
                Debug.LogError("model file is not loaded.The model and prototxt file can be downloaded here: \"https://github.com/chuanqi305/MobileNet-SSD\".Please copy to “Assets/StreamingAssets/dnn/” folder. ");
            }
            else
            {
                net = Dnn.readNetFromCaffe(prototxt_filepath, model_filepath);
            }

            if (net == null)
            {
                img = new Mat(img, crop);

                Imgproc.putText(img, "model file is not loaded.", new Point(5, img.rows() - 30), Core.FONT_HERSHEY_SIMPLEX, 0.7, new Scalar(255, 255, 255), 2, Imgproc.LINE_AA, false);
                Imgproc.putText(img, "Please read console message.", new Point(5, img.rows() - 10), Core.FONT_HERSHEY_SIMPLEX, 0.7, new Scalar(255, 255, 255), 2, Imgproc.LINE_AA, false);
            }
            else
            {
                Mat blob = Dnn.blobFromImage(img, inScaleFactor, new Size(inWidth, inHeight), new Scalar(meanVal), false, true);

                net.setInput(blob);


                TickMeter tm = new TickMeter();
                tm.start();

                Mat prob = net.forward();
                prob = prob.reshape(1, (int)prob.total() / 7);

                tm.stop();
                Debug.Log("Inference time, ms: " + tm.getTimeMilli());


                img = new Mat(img, crop);

                float[] data = new float[7];

                float confidenceThreshold = 0.2f;
                for (int i = 0; i < prob.rows(); i++)
                {
                    prob.get(i, 0, data);

                    float confidence = data [2];

                    if (confidence > confidenceThreshold)
                    {
                        int class_id = (int)(data [1]);

                        float xLeftBottom = data [3] * img.cols();
                        float yLeftBottom = data [4] * img.rows();
                        float xRightTop   = data [5] * img.cols();
                        float yRightTop   = data [6] * img.rows();

                        Debug.Log("class_id: " + class_id);
                        Debug.Log("Confidence: " + confidence);

                        Debug.Log(" " + xLeftBottom
                                  + " " + yLeftBottom
                                  + " " + xRightTop
                                  + " " + yRightTop);

                        Imgproc.rectangle(img, new Point(xLeftBottom, yLeftBottom), new Point(xRightTop, yRightTop),
                                          new Scalar(0, 255, 0), 2);
                        string label     = classNames [class_id] + ": " + confidence;
                        int[]  baseLine  = new int[1];
                        Size   labelSize = Imgproc.getTextSize(label, Core.FONT_HERSHEY_SIMPLEX, 0.5, 1, baseLine);

                        Imgproc.rectangle(img, new Point(xLeftBottom, yLeftBottom),
                                          new Point(xLeftBottom + labelSize.width, yLeftBottom + labelSize.height + baseLine [0]),
                                          new Scalar(255, 255, 255), Core.FILLED);
                        Imgproc.putText(img, label, new Point(xLeftBottom, yLeftBottom + labelSize.height),
                                        Core.FONT_HERSHEY_SIMPLEX, 0.5, new Scalar(0, 0, 0));
                    }
                }

                prob.Dispose();
            }

            Imgproc.cvtColor(img, img, Imgproc.COLOR_BGR2RGB);

            Texture2D texture = new Texture2D(img.cols(), img.rows(), TextureFormat.RGBA32, false);

            Utils.matToTexture2D(img, texture);

            gameObject.GetComponent <Renderer> ().material.mainTexture = texture;


            Utils.setDebugMode(false);
        }
Ejemplo n.º 7
0
        // Use this for initialization
        void Run()
        {
            //if true, The error log of the Native side OpenCV will be displayed on the Unity Editor Console.
            Utils.setDebugMode(true);


            classNames = readClassNames(classes_filepath);
            if (classNames == null)
            {
                Debug.LogError(classes_filepath + " is not loaded. Please see \"StreamingAssets/dnn/setup_dnn_module.pdf\". ");
            }

            classColors = new List <Scalar>();
            for (int i = 0; i < classNames.Count; i++)
            {
                classColors.Add(new Scalar(UnityEngine.Random.Range(0, 255), UnityEngine.Random.Range(0, 255), UnityEngine.Random.Range(0, 255)));
            }


            Mat img = Imgcodecs.imread(image_filepath);

            if (img.empty())
            {
                Debug.LogError(image_filepath + " is not loaded. Please see \"StreamingAssets/dnn/setup_dnn_module.pdf\". ");
                img = new Mat(height, width, CvType.CV_8UC3, new Scalar(0, 0, 0));
            }



            //Adust Quad.transform.localScale.
            gameObject.transform.localScale = new Vector3(img.width(), img.height(), 1);
            Debug.Log("Screen.width " + Screen.width + " Screen.height " + Screen.height + " Screen.orientation " + Screen.orientation);

            float imageWidth  = img.width();
            float imageHeight = img.height();

            float widthScale  = (float)Screen.width / imageWidth;
            float heightScale = (float)Screen.height / imageHeight;

            if (widthScale < heightScale)
            {
                Camera.main.orthographicSize = (imageWidth * (float)Screen.height / (float)Screen.width) / 2;
            }
            else
            {
                Camera.main.orthographicSize = imageHeight / 2;
            }


            Net net = null;

            if (string.IsNullOrEmpty(model_filepath) || string.IsNullOrEmpty(config_filepath))
            {
                Debug.LogError(model_filepath + " or " + config_filepath + " is not loaded. Please see \"StreamingAssets/dnn/setup_dnn_module.pdf\". ");
            }
            else
            {
                net = Dnn.readNetFromTensorflow(model_filepath, config_filepath);
            }

            if (net == null)
            {
                Imgproc.putText(img, "model file is not loaded.", new Point(5, img.rows() - 30), Imgproc.FONT_HERSHEY_SIMPLEX, 0.7, new Scalar(255, 255, 255), 2, Imgproc.LINE_AA, false);
                Imgproc.putText(img, "Please read console message.", new Point(5, img.rows() - 10), Imgproc.FONT_HERSHEY_SIMPLEX, 0.7, new Scalar(255, 255, 255), 2, Imgproc.LINE_AA, false);
            }
            else
            {
                float frameW = img.cols();
                float frameH = img.rows();

                // Create a 4D blob from a frame.
                Mat blob = Dnn.blobFromImage(img, 1.0, new Size(width, height), new Scalar(0, 0, 0), true, false);

                //Run a model
                net.setInput(blob);

                List <Mat>    outputBlobs = new List <Mat>();
                List <string> outputName  = new List <string>();
                outputName.Add("detection_out_final");
                outputName.Add("detection_masks");

                TickMeter tm = new TickMeter();
                tm.start();

                net.forward(outputBlobs, outputName);

                tm.stop();
                Debug.Log("Inference time, ms: " + tm.getTimeMilli());

                Mat boxes = outputBlobs[0];
                Mat masks = outputBlobs[1];

                //int numClasses = masks.size(1);
                int numDetections = boxes.size(2);
                int mask_sizeH    = masks.size(2);
                int mask_sizeW    = masks.size(3);

                float[] box_data  = new float[boxes.size(3)];
                float[] mask_data = new float[masks.size(2) * masks.size(3)];

                for (int i = 0; i < numDetections; i++)
                {
                    boxes.get(new int[] { 0, 0, i, 0 }, box_data);

                    float score = box_data[2];

                    if (score > thr)
                    {
                        int classId = (int)box_data[1];

                        float left   = (int)frameW * box_data[3];
                        float top    = (int)frameH * box_data[4];
                        float right  = (int)frameW * box_data[5];
                        float bottom = (int)frameH * box_data[6];

                        left   = (int)Mathf.Max(0, Mathf.Min(left, frameW - 1));
                        top    = (int)Mathf.Max(0, Mathf.Min(top, frameH - 1));
                        right  = (int)Mathf.Max(0, Mathf.Min(right, frameW - 1));
                        bottom = (int)Mathf.Max(0, Mathf.Min(bottom, frameH - 1));


                        masks.get(new int[] { i, classId, 0, 0 }, mask_data);

                        Mat classMask = new Mat(mask_sizeH, mask_sizeW, CvType.CV_32F);
                        classMask.put(0, 0, mask_data);
                        Imgproc.resize(classMask, classMask, new Size(right - left + 1, bottom - top + 1));
                        Core.compare(classMask, new Scalar(0.5), classMask, Core.CMP_GT);

                        Mat roi        = new Mat(img, new OpenCVForUnity.CoreModule.Rect(new Point(left, top), new Point(right + 1, bottom + 1)));
                        Mat coloredRoi = new Mat(roi.size(), CvType.CV_8UC3);
                        Imgproc.rectangle(coloredRoi, new Point(0, 0), new Point(coloredRoi.width(), coloredRoi.height()), classColors[classId], -1);
                        Core.addWeighted(coloredRoi, 0.7, roi, 0.3, 0, coloredRoi);

                        coloredRoi.copyTo(roi, classMask);
                        coloredRoi.Dispose();
                        classMask.Dispose();


                        drawPred(classId, score, left, top, right, bottom, img);

                        Debug.Log("classId:" + classId + " cnof:" + score + " l:" + left + " t:" + top + " r:" + right + " b:" + bottom);
                    }
                }

                boxes.Dispose();
                masks.Dispose();
                blob.Dispose();
            }

            Imgproc.cvtColor(img, img, Imgproc.COLOR_BGR2RGB);

            Texture2D texture = new Texture2D(img.cols(), img.rows(), TextureFormat.RGBA32, false);

            Utils.matToTexture2D(img, texture);

            gameObject.GetComponent <Renderer>().material.mainTexture = texture;

            net.Dispose();


            Utils.setDebugMode(false);
        }
        // Use this for initialization
        void Run()
        {
            //if true, The error log of the Native side OpenCV will be displayed on the Unity Editor Console.
            Utils.setDebugMode(true);

            Mat img = Imgcodecs.imread(image_filepath, Imgcodecs.IMREAD_COLOR);

            if (img.empty())
            {
                Debug.LogError(image_filepath + " is not loaded. Please see \"StreamingAssets/dnn/setup_dnn_module.pdf\". ");
                img = new Mat(368, 368, CvType.CV_8UC3, new Scalar(0, 0, 0));
            }

            //Adust Quad.transform.localScale.
            gameObject.transform.localScale = new Vector3(img.width(), img.height(), 1);
            Debug.Log("Screen.width " + Screen.width + " Screen.height " + Screen.height + " Screen.orientation " + Screen.orientation);

            float imageWidth  = img.width();
            float imageHeight = img.height();

            float widthScale  = (float)Screen.width / imageWidth;
            float heightScale = (float)Screen.height / imageHeight;

            if (widthScale < heightScale)
            {
                Camera.main.orthographicSize = (imageWidth * (float)Screen.height / (float)Screen.width) / 2;
            }
            else
            {
                Camera.main.orthographicSize = imageHeight / 2;
            }


            Net detector   = null;
            Net recognizer = null;

            if (string.IsNullOrEmpty(detectionmodel_filepath) || string.IsNullOrEmpty(recognitionmodel_filepath))
            {
                Debug.LogError(detectionmodel_filepath + " or " + recognitionmodel_filepath + " is not loaded. Please see \"StreamingAssets/dnn/setup_dnn_module.pdf\". ");
            }
            else
            {
                detector   = Dnn.readNet(detectionmodel_filepath);
                recognizer = Dnn.readNet(recognitionmodel_filepath);
            }

            if (detector == null || recognizer == null)
            {
                Imgproc.putText(img, "model file is not loaded.", new Point(5, img.rows() - 30), Imgproc.FONT_HERSHEY_SIMPLEX, 0.7, new Scalar(255, 255, 255), 2, Imgproc.LINE_AA, false);
                Imgproc.putText(img, "Please read console message.", new Point(5, img.rows() - 10), Imgproc.FONT_HERSHEY_SIMPLEX, 0.7, new Scalar(255, 255, 255), 2, Imgproc.LINE_AA, false);
            }
            else
            {
                TickMeter tickMeter = new TickMeter();

                List <Mat>    outs     = new List <Mat>();
                List <string> outNames = new List <string>();
                outNames.Add("feature_fusion/Conv_7/Sigmoid");
                outNames.Add("feature_fusion/concat_3");

                // Create a 4D blob from a frame.
                Size inpSize = new Size(inpWidth > 0 ? inpWidth : img.cols(), inpHeight > 0 ? inpHeight : img.rows());
                Mat  blob    = Dnn.blobFromImage(img, 1.0, inpSize, new Scalar(123.68, 116.78, 103.94), true, false); // blobFromImage(frame, blob, 1.0, Size(inpWidth, inpHeight), Scalar(123.68, 116.78, 103.94), true, false);

                // Run detection model.
                detector.setInput(blob);
                tickMeter.start();
                detector.forward(outs, outNames);
                tickMeter.stop();

                Mat scores   = outs[0];
                Mat geometry = outs[1];

                // Decode predicted bounding boxes.
                List <RotatedRect> boxes       = new List <RotatedRect>();
                List <float>       confidences = new List <float>();
                decodeBoundingBoxes(scores, geometry, confThreshold, boxes, confidences);


                // Apply non-maximum suppression procedure.
                MatOfRotatedRect boxesMat       = new MatOfRotatedRect(boxes.ToArray());
                MatOfFloat       confidencesMat = new MatOfFloat(confidences.ToArray());
                MatOfInt         indicesMat     = new MatOfInt();
                Dnn.NMSBoxesRotated(boxesMat, confidencesMat, confThreshold, nmsThreshold, indicesMat);

                List <int> indices = indicesMat.toList();
                Point      ratio   = new Point(img.cols() / inpWidth, img.rows() / inpHeight);

                // Render text.
                for (int i = 0; i < indices.Count; ++i)
                {
                    RotatedRect box = boxes[indices[i]];

                    Point[] vertices = new Point[4];
                    box.points(vertices);

                    for (int j = 0; j < 4; ++j)
                    {
                        vertices[j].x *= ratio.x;
                        vertices[j].y *= ratio.y;
                    }

                    for (int j = 0; j < 4; ++j)
                    {
                        Imgproc.line(img, vertices[j], vertices[(j + 1) % 4], new Scalar(0, 255, 0), 1);
                    }

                    if (recognizer != null)
                    {
                        Mat cropped = new Mat();
                        fourPointsTransform(img, vertices, cropped);

                        //Debug.Log(cropped);

                        Imgproc.cvtColor(cropped, cropped, Imgproc.COLOR_BGR2GRAY);

                        Mat blobCrop = Dnn.blobFromImage(cropped, 1.0 / 127.5, new Size(), Scalar.all(127.5));
                        recognizer.setInput(blobCrop);

                        //Debug.Log(blobCrop);

                        tickMeter.start();
                        Mat result = recognizer.forward();
                        tickMeter.stop();

                        string wordRecognized;
                        decodeText(result, out wordRecognized);
                        Imgproc.putText(img, wordRecognized, vertices[1], Imgproc.FONT_HERSHEY_SIMPLEX, 0.5, new Scalar(255, 0, 0), 1, Imgproc.LINE_AA, false);

                        Debug.Log(wordRecognized);


                        cropped.Dispose();
                        blobCrop.Dispose();
                        result.Dispose();
                    }
                }

                Debug.Log("Inference time, ms: " + tickMeter.getTimeMilli());

                for (int i = 0; i < outs.Count; i++)
                {
                    outs[i].Dispose();
                }
                blob.Dispose();
                detector.Dispose();
                recognizer.Dispose();
            }

            Imgproc.cvtColor(img, img, Imgproc.COLOR_BGR2RGB);

            Texture2D texture = new Texture2D(img.cols(), img.rows(), TextureFormat.RGBA32, false);

            Utils.matToTexture2D(img, texture);

            gameObject.GetComponent <Renderer>().material.mainTexture = texture;


            Utils.setDebugMode(false);
        }
        // Use this for initialization
        void Run(Mat img)
        {
            //if true, The error log of the Native side OpenCV will be displayed on the Unity Editor Console.
            Utils.setDebugMode(true);

            if (!string.IsNullOrEmpty(classes))
            {
                classNames = readClassNames(classes_filepath);
#if !UNITY_WSA_10_0
                if (classNames == null)
                {
                    Debug.LogError(classes_filepath + " is not loaded. Please see \"StreamingAssets/dnn/setup_dnn_module.pdf\". ");
                }
#endif
            }
            else if (classesList.Count > 0)
            {
                classNames = classesList;
            }



            Net net = null;

            if (string.IsNullOrEmpty(config_filepath) || string.IsNullOrEmpty(model_filepath))
            {
                Debug.LogError(config_filepath + " or " + model_filepath + " is not loaded. Please see \"StreamingAssets/dnn/setup_dnn_module.pdf\". ");
            }
            else
            {
                //! [Initialize network]
                net = Dnn.readNet(model_filepath, config_filepath);
                //! [Initialize network]
            }


            if (net == null)
            {
                Imgproc.putText(img, "model file is not loaded.", new Point(5, img.rows() - 30), Imgproc.FONT_HERSHEY_SIMPLEX, 0.7, new Scalar(255, 255, 255), 2, Imgproc.LINE_AA, false);
                Imgproc.putText(img, "Please read console message.", new Point(5, img.rows() - 10), Imgproc.FONT_HERSHEY_SIMPLEX, 0.7, new Scalar(255, 255, 255), 2, Imgproc.LINE_AA, false);
            }
            else
            {
                outBlobNames = getOutputsNames(net);
                //                for (int i = 0; i < outBlobNames.Count; i++) {
                //                    Debug.Log ("names [" + i + "] " + outBlobNames [i]);
                //                }

                outBlobTypes = getOutputsTypes(net);
                //                for (int i = 0; i < outBlobTypes.Count; i++) {
                //                    Debug.Log ("types [" + i + "] " + outBlobTypes [i]);
                //                }


                // Create a 4D blob from a frame.
                Size inpSize = new Size(inpWidth > 0 ? inpWidth : img.cols(),
                                        inpHeight > 0 ? inpHeight : img.rows());
                Mat blob = Dnn.blobFromImage(img, scale, inpSize, mean, swapRB, false);


                // Run a model.
                net.setInput(blob);

                if (net.getLayer(new DictValue(0)).outputNameToIndex("im_info") != -1)
                {  // Faster-RCNN or R-FCN
                    Imgproc.resize(img, img, inpSize);
                    Mat imInfo = new Mat(1, 3, CvType.CV_32FC1);
                    imInfo.put(0, 0, new float[] {
                        (float)inpSize.height,
                        (float)inpSize.width,
                        1.6f
                    });
                    net.setInput(imInfo, "im_info");
                }


                TickMeter tm = new TickMeter();
                tm.start();


                List <Mat> outs = new List <Mat>();
                net.forward(outs, outBlobNames);


                tm.stop();
                Debug.Log("Inference time, ms: " + tm.getTimeMilli());


                postprocess(img, outs, net);

                for (int i = 0; i < outs.Count; i++)
                {
                    outs[i].Dispose();
                }
                blob.Dispose();
                net.Dispose();
            }


            Utils.setDebugMode(false);
        }
Ejemplo n.º 10
0
        /// <summary>
        /// Process
        /// </summary>
        /// <returns></returns>
        private async void Process()
        {
            float DOWNSCALE_RATIO = 1.0f;

            while (true)
            {
                // Check TaskCancel
                if (tokenSource.Token.IsCancellationRequested)
                {
                    break;
                }

                rgbaMat = webCamTextureToMatHelper.GetMat();
                // Debug.Log ("rgbaMat.ToString() " + rgbaMat.ToString ());

                Mat downScaleRgbaMat = null;
                DOWNSCALE_RATIO = 1.0f;
                if (enableDownScale)
                {
                    downScaleRgbaMat = imageOptimizationHelper.GetDownScaleMat(rgbaMat);
                    DOWNSCALE_RATIO  = imageOptimizationHelper.downscaleRatio;
                }
                else
                {
                    downScaleRgbaMat = rgbaMat;
                    DOWNSCALE_RATIO  = 1.0f;
                }
                Imgproc.cvtColor(downScaleRgbaMat, bgrMat, Imgproc.COLOR_RGBA2BGR);



                await Task.Run(() =>
                {
                    // detect faces on the downscale image
                    if (!enableSkipFrame || !imageOptimizationHelper.IsCurrentFrameSkipped())
                    {
                        if (net == null)
                        {
                            Imgproc.putText(rgbaMat, "model file is not loaded.", new Point(5, rgbaMat.rows() - 30), Imgproc.FONT_HERSHEY_SIMPLEX, 0.7, new Scalar(255, 255, 255, 255), 2, Imgproc.LINE_AA, false);
                            Imgproc.putText(rgbaMat, "Please read console message.", new Point(5, rgbaMat.rows() - 10), Imgproc.FONT_HERSHEY_SIMPLEX, 0.7, new Scalar(255, 255, 255, 255), 2, Imgproc.LINE_AA, false);
                        }
                        else
                        {
                            // Create a 4D blob from a frame.
                            Size inpSize = new Size(inpWidth > 0 ? inpWidth : bgrMat.cols(),
                                                    inpHeight > 0 ? inpHeight : bgrMat.rows());
                            Mat blob = Dnn.blobFromImage(bgrMat, scale, inpSize, mean, swapRB, false);


                            // Run a model.
                            net.setInput(blob);

                            if (net.getLayer(new DictValue(0)).outputNameToIndex("im_info") != -1)
                            {  // Faster-RCNN or R-FCN
                                Imgproc.resize(bgrMat, bgrMat, inpSize);
                                Mat imInfo = new Mat(1, 3, CvType.CV_32FC1);
                                imInfo.put(0, 0, new float[] {
                                    (float)inpSize.height,
                                    (float)inpSize.width,
                                    1.6f
                                });
                                net.setInput(imInfo, "im_info");
                            }


                            TickMeter tm = new TickMeter();
                            tm.start();

                            List <Mat> outs = new List <Mat>();
                            net.forward(outs, outBlobNames);

                            tm.stop();
                            //                    Debug.Log ("Inference time, ms: " + tm.getTimeMilli ());


                            postprocess(bgrMat, outs, net);

                            for (int i = 0; i < outs.Count; i++)
                            {
                                outs[i].Dispose();
                            }
                            blob.Dispose();


                            if (enableDownScale)
                            {
                                for (int i = 0; i < _boxesList.Count; ++i)
                                {
                                    var rect      = _boxesList[i];
                                    _boxesList[i] = new OpenCVForUnity.CoreModule.Rect(
                                        (int)(rect.x * DOWNSCALE_RATIO),
                                        (int)(rect.y * DOWNSCALE_RATIO),
                                        (int)(rect.width * DOWNSCALE_RATIO),
                                        (int)(rect.height * DOWNSCALE_RATIO));
                                }
                            }
                        }


                        //Imgproc.rectangle(rgbaMat, new Point(0, 0), new Point(rgbaMat.width(), rgbaMat.height()), new Scalar(0, 0, 0, 0), -1);


                        MatOfRect boxes = new MatOfRect();
                        boxes.fromList(_boxesList);

                        MatOfFloat confidences = new MatOfFloat();
                        confidences.fromList(_confidencesList);


                        MatOfInt indices = new MatOfInt();
                        Dnn.NMSBoxes(boxes, confidences, confThreshold, nmsThreshold, indices);

                        //            Debug.Log ("indices.dump () "+indices.dump ());
                        //            Debug.Log ("indices.ToString () "+indices.ToString());

                        for (int i = 0; i < indices.total(); ++i)
                        {
                            int idx = (int)indices.get(i, 0)[0];
                            OpenCVForUnity.CoreModule.Rect box = _boxesList[idx];
                            drawPred(_classIdsList[idx], _confidencesList[idx], box.x, box.y,
                                     box.x + box.width, box.y + box.height, rgbaMat);
                        }

                        indices.Dispose();
                        boxes.Dispose();
                        confidences.Dispose();
                    }
                });



                Utils.fastMatToTexture2D(rgbaMat, texture);


                Thread.Sleep(10);
            }
        }
    public void Run()
    {
        //if true, The error log of the Native side OpenCV will be displayed on the Unity Editor Console.
        Utils.setDebugMode(true);

        classNames = readClassNames(classes_filepath);
        if (classNames == null)
        {
            Debug.LogError(classes_filepath +
                           " is not loaded. Please see \"StreamingAssets/dnn/setup_dnn_module.pdf\". ");
        }


        //Mat img = new Mat(imageTex.height, imageTex.width, CvType.);
        //Utils.texture2DToMat(imageTex, img);

        Mat img = Imgcodecs.imread(input_filepath);

        if (img.empty())
        {
            Debug.LogError(input_filepath + " is not loaded. Please see \"StreamingAssets/dnn/setup_dnn_module.pdf\". ");
            img = new Mat(424, 640, CvType.CV_8UC3, new Scalar(0, 0, 0));
        }

        //Adust Quad.transform.localScale.
        gameObject.transform.localScale = new Vector3(img.width(), img.height(), 1);
        Debug.Log("Screen.width " + Screen.width + " Screen.height " + Screen.height + " Screen.orientation " + Screen.orientation);

        float imageWidth  = img.width();
        float imageHeight = img.height();

        float widthScale  = (float)Screen.width / imageWidth;
        float heightScale = (float)Screen.height / imageHeight;

        if (widthScale < heightScale)
        {
            Camera.main.orthographicSize = (imageWidth * (float)Screen.height / (float)Screen.width) / 2;
        }
        else
        {
            Camera.main.orthographicSize = imageHeight / 2;
        }

        Net net = null;

        if (string.IsNullOrEmpty(model_filepath) || string.IsNullOrEmpty(config_filepath))
        {
            Debug.LogError(model_filepath + " or " + config_filepath +
                           " is not loaded. Please see \"StreamingAssets/dnn/setup_dnn_module.pdf\". ");
        }
        else
        {
            net = Dnn.readNetFromTensorflow(model_filepath, config_filepath);
        }

        if (net == null)
        {
            Imgproc.putText(img, "model file is not loaded.", new Point(5, img.rows() - 30),
                            Imgproc.FONT_HERSHEY_SIMPLEX, 0.7, new Scalar(255, 255, 255), 2, Imgproc.LINE_AA, false);
            Imgproc.putText(img, "Please read console message.", new Point(5, img.rows() - 10),
                            Imgproc.FONT_HERSHEY_SIMPLEX, 0.7, new Scalar(255, 255, 255), 2, Imgproc.LINE_AA, false);
        }
        else
        {
            outBlobNames = getOutputsNames(net);
            outBlobTypes = getOutputsTypes(net);

            Mat blob = Dnn.blobFromImage(img, 0.007843, new Size(300, 300), new Scalar(127.5, 127.5, 127.5));

            net.setInput(blob);

            TickMeter tm = new TickMeter();
            tm.start();


            List <Mat> outs = new List <Mat>();
            net.forward(outs, outBlobNames);


            tm.stop();
            Debug.Log("Inference time, ms: " + tm.getTimeMilli());


            postprocess(img, outs, net);

            for (int i = 0; i < outs.Count; i++)
            {
                outs[i].Dispose();
            }
            blob.Dispose();
            net.Dispose();


            Imgproc.cvtColor(img, img, Imgproc.COLOR_BGR2RGB);

            Texture2D texture = new Texture2D(img.cols(), img.rows(), TextureFormat.RGBA32, false);

            Utils.matToTexture2D(img, texture);

            gameObject.GetComponent <Renderer>().material.mainTexture = texture;


            Utils.setDebugMode(false);
        }
    }
Ejemplo n.º 12
0
        void ObjectDetection()
        {
            // If true, The error log of the Native side OpenCV will be displayed on the Unity Editor Console.
            Utils.setDebugMode(true);

            Mat img = Imgcodecs.imread(image);

            if (img.empty())
            {
                Debug.LogError("Image " + image + " is not loaded.");
                img = new Mat(424, 640, CvType.CV_8UC3, new Scalar(0, 0, 0));
            }


            Net net = null;

            if (string.IsNullOrEmpty(cfg) || string.IsNullOrEmpty(weight))
            {
                Debug.LogError(cfg + " or " + weight + " is not loaded.");
            }
            else
            {
                //load model and config
                net = Dnn.readNet(weight, cfg);
            }

            if (net == null)
            {
                Imgproc.putText(img, "model file is not loaded.", new Point(5, img.rows() - 30), Imgproc.FONT_HERSHEY_SIMPLEX, 0.7, new Scalar(255, 255, 255), 2, Imgproc.LINE_AA, false);
                Imgproc.putText(img, "Please read console message.", new Point(5, img.rows() - 10), Imgproc.FONT_HERSHEY_SIMPLEX, 0.7, new Scalar(255, 255, 255), 2, Imgproc.LINE_AA, false);
            }
            else
            {
                //setting blob, size can be:320/416/608
                //opencv blob setting can check here https://github.com/opencv/opencv/tree/master/samples/dnn#object-detection
                Mat blob = Dnn.blobFromImage(img, 1.0 / 255, new Size(416, 416), new Scalar(0), false, false);

                //input data
                net.setInput(blob);

                //get output layer name
                List <string> outNames = net.getUnconnectedOutLayersNames();
                //create mats for output layer
                List <Mat> outs = outNames.Select(_ => new Mat()).ToList();

                #region forward model
                TickMeter tm = new TickMeter();
                tm.start();

                net.forward(outs, outNames);

                tm.stop();
                Debug.Log("Runtime: " + tm.getTimeMilli() + " ms");
                #endregion

                //get result from all output
                GetResult(outs, img, threshold, nmsThreshold);
            }

            // Show Image
            Imgproc.cvtColor(img, img, Imgproc.COLOR_BGR2RGB);
            Texture2D texture = new Texture2D(img.cols(), img.rows(), TextureFormat.RGBA32, false);
            Utils.matToTexture2D(img, texture);
            gameObject.GetComponent <Renderer>().material.mainTexture = texture;
            Utils.setDebugMode(false);
        }
        // Update is called once per frame
        void Update()
        {
            for (int i = 0; i < validTimer.Length; i++)
            {
                validTimer[i] -= Time.deltaTime;
                if (validTimer[i] <= 0.0f)
                {
                    timerEnded(i);
                }
            }


            switch (ClassID)
            {
            case 20:     //LCD
                GUIObject[3].transform.position = Vector3.MoveTowards(GUIObject[3].transform.position, sphere[3].transform.position, Time.deltaTime * speed);
                break;

            case 12:     //Dog
                GUIObject[3].transform.position = Vector3.MoveTowards(GUIObject[3].transform.position, sphere[3].transform.position, Time.deltaTime * speed);
                break;

            case 9:     // Chair
                GUIObject[2].transform.position = Vector3.MoveTowards(GUIObject[2].transform.position, sphere[2].transform.position, Time.deltaTime * speed);
                break;

            case 5:     // Bottle
                GUIObject[1].transform.position = Vector3.MoveTowards(GUIObject[1].transform.position, sphere[1].transform.position, Time.deltaTime * speed);
                break;

            case 15:    // Civilian
                GUIObject[0].transform.position = Vector3.MoveTowards(GUIObject[0].transform.position, sphere[0].transform.position, Time.deltaTime * speed);
                break;

            default:
                print("Unknown");
                break;
            }


            if (webCamTextureToMatHelper.IsPlaying() && webCamTextureToMatHelper.DidUpdateThisFrame())
            {
                Mat rgbaMat = webCamTextureToMatHelper.GetMat();

                if (net == null)
                {
                    Imgproc.putText(rgbaMat, "model file is not loaded.", new Point(5, rgbaMat.rows() - 30), Imgproc.FONT_HERSHEY_SIMPLEX, 0.7, new Scalar(255, 255, 255, 255), 2, Imgproc.LINE_AA, false);
                    Imgproc.putText(rgbaMat, "Please read console message.", new Point(5, rgbaMat.rows() - 10), Imgproc.FONT_HERSHEY_SIMPLEX, 0.7, new Scalar(255, 255, 255, 255), 2, Imgproc.LINE_AA, false);
                }
                else
                {
                    Imgproc.cvtColor(rgbaMat, bgrMat, Imgproc.COLOR_RGBA2BGR);


                    // Create a 4D blob from a frame.
                    Size inpSize = new Size(inpWidth > 0 ? inpWidth : bgrMat.cols(),
                                            inpHeight > 0 ? inpHeight : bgrMat.rows());
                    Mat blob = Dnn.blobFromImage(bgrMat, scale, inpSize, mean, swapRB, false);


                    // Run a model.
                    net.setInput(blob);

                    if (net.getLayer(new DictValue(0)).outputNameToIndex("im_info") != -1)       // Faster-RCNN or R-FCN
                    {
                        Imgproc.resize(bgrMat, bgrMat, inpSize);
                        Mat imInfo = new Mat(1, 3, CvType.CV_32FC1);
                        imInfo.put(0, 0, new float[] {
                            (float)inpSize.height,
                            (float)inpSize.width,
                            1.6f
                        });
                        net.setInput(imInfo, "im_info");
                    }


                    TickMeter tm = new TickMeter();
                    tm.start();

                    List <Mat> outs = new List <Mat> ();
                    net.forward(outs, outBlobNames);

                    tm.stop();
//                    Debug.Log ("Inference time, ms: " + tm.getTimeMilli ());


                    postprocess(rgbaMat, outs, net);

                    for (int i = 0; i < outs.Count; i++)
                    {
                        outs [i].Dispose();
                    }
                    blob.Dispose();
                }

                Utils.fastMatToTexture2D(rgbaMat, texture);
            }
        }