Example #1
0
        /// <summary> <p>Estimates module size (pixels in a module) based on the Start and End
        /// finder patterns.</p>
        ///
        /// </summary>
        /// <param name="vertices">an array of vertices:
        /// vertices[0] x, y top left barcode
        /// vertices[1] x, y bottom left barcode
        /// vertices[2] x, y top right barcode
        /// vertices[3] x, y bottom right barcode
        /// vertices[4] x, y top left codeword area
        /// vertices[5] x, y bottom left codeword area
        /// vertices[6] x, y top right codeword area
        /// vertices[7] x, y bottom right codeword area
        /// </param>
        /// <returns> the module size.
        /// </returns>
        private static float computeModuleWidth(ResultPoint[] vertices)
        {
            float pixels1      = ResultPoint.distance(vertices[0], vertices[4]);
            float pixels2      = ResultPoint.distance(vertices[1], vertices[5]);
            float moduleWidth1 = (pixels1 + pixels2) / (17 * 2.0f);
            float pixels3      = ResultPoint.distance(vertices[6], vertices[2]);
            float pixels4      = ResultPoint.distance(vertices[7], vertices[3]);
            float moduleWidth2 = (pixels3 + pixels4) / (18 * 2.0f);

            return((moduleWidth1 + moduleWidth2) / 2.0f);
        }
Example #2
0
        /// <summary> Computes the dimension (number of modules in a row) of the PDF417 Code
        /// based on vertices of the codeword area and estimated module size.
        ///
        /// </summary>
        /// <param name="topLeft">    of codeword area
        /// </param>
        /// <param name="topRight">   of codeword area
        /// </param>
        /// <param name="bottomLeft"> of codeword area
        /// </param>
        /// <param name="bottomRight">of codeword are
        /// </param>
        /// <param name="moduleWidth">estimated module size
        /// </param>
        /// <returns> the number of modules in a row.
        /// </returns>
        private static int computeDimension(ResultPoint topLeft, ResultPoint topRight, ResultPoint bottomLeft, ResultPoint bottomRight, float moduleWidth)
        {
            int topRowDimension    = round(ResultPoint.distance(topLeft, topRight) / moduleWidth);
            int bottomRowDimension = round(ResultPoint.distance(bottomLeft, bottomRight) / moduleWidth);

            return(((((topRowDimension + bottomRowDimension) >> 1) + 8) / 17) * 17);

            /*
             * int topRowDimension = round(ResultPoint.distance(topLeft,
             * topRight)); //moduleWidth); int bottomRowDimension =
             * round(ResultPoint.distance(bottomLeft, bottomRight)); //
             * moduleWidth); int dimension = ((topRowDimension + bottomRowDimension)
             * >> 1); // Round up to nearest 17 modules i.e. there are 17 modules per
             * codeword //int dimension = ((((topRowDimension + bottomRowDimension) >>
             * 1) + 8) / 17) * 17; return dimension;
             */
        }
        /// <returns> the 3 best {@link FinderPattern}s from our list of candidates. The "best" are
        /// those that have been detected at least {@link #CENTER_QUORUM} times, and whose module
        /// size differs from the average among those patterns the least
        /// </returns>
        /// <throws>  ReaderException if 3 such finder patterns do not exist </throws>
        private FinderPattern[][] selectBestPatterns()
        {
            System.Collections.ArrayList possibleCenters = PossibleCenters;
            int size = possibleCenters.Count;

            if (size < 3)
            {
                // Couldn't find enough finder patterns
                throw ReaderException.Instance;
            }

            /*
             * Begin HE modifications to safely detect multiple codes of equal size
             */
            if (size == 3)
            {
                return(new FinderPattern[][] { new FinderPattern[] { (FinderPattern)possibleCenters[0], (FinderPattern)possibleCenters[1], (FinderPattern)possibleCenters[2] } });
            }

            // Sort by estimated module size to speed up the upcoming checks
            Collections.insertionSort(possibleCenters, new ModuleSizeComparator());

            /*
             * Now lets start: build a list of tuples of three finder locations that
             *  - feature similar module sizes
             *  - are placed in a distance so the estimated module count is within the QR specification
             *  - have similar distance between upper left/right and left top/bottom finder patterns
             *  - form a triangle with 90° angle (checked by comparing top right/bottom left distance
             *    with pythagoras)
             *
             * Note: we allow each point to be used for more than one code region: this might seem
             * counterintuitive at first, but the performance penalty is not that big. At this point,
             * we cannot make a good quality decision whether the three finders actually represent
             * a QR code, or are just by chance layouted so it looks like there might be a QR code there.
             * So, if the layout seems right, lets have the decoder try to decode.
             */

            System.Collections.ArrayList results = System.Collections.ArrayList.Synchronized(new System.Collections.ArrayList(10));             // holder for the results

            for (int i1 = 0; i1 < (size - 2); i1++)
            {
                FinderPattern p1 = (FinderPattern)possibleCenters[i1];
                if (p1 == null)
                {
                    continue;
                }

                for (int i2 = i1 + 1; i2 < (size - 1); i2++)
                {
                    FinderPattern p2 = (FinderPattern)possibleCenters[i2];
                    if (p2 == null)
                    {
                        continue;
                    }

                    // Compare the expected module sizes; if they are really off, skip
                    float vModSize12  = (p1.EstimatedModuleSize - p2.EstimatedModuleSize) / (System.Math.Min(p1.EstimatedModuleSize, p2.EstimatedModuleSize));
                    float vModSize12A = System.Math.Abs(p1.EstimatedModuleSize - p2.EstimatedModuleSize);
                    if (vModSize12A > DIFF_MODSIZE_CUTOFF && vModSize12 >= DIFF_MODSIZE_CUTOFF_PERCENT)
                    {
                        // break, since elements are ordered by the module size deviation there cannot be
                        // any more interesting elements for the given p1.
                        break;
                    }

                    for (int i3 = i2 + 1; i3 < size; i3++)
                    {
                        FinderPattern p3 = (FinderPattern)possibleCenters[i3];
                        if (p3 == null)
                        {
                            continue;
                        }

                        // Compare the expected module sizes; if they are really off, skip
                        float vModSize23  = (p2.EstimatedModuleSize - p3.EstimatedModuleSize) / (System.Math.Min(p2.EstimatedModuleSize, p3.EstimatedModuleSize));
                        float vModSize23A = System.Math.Abs(p2.EstimatedModuleSize - p3.EstimatedModuleSize);
                        if (vModSize23A > DIFF_MODSIZE_CUTOFF && vModSize23 >= DIFF_MODSIZE_CUTOFF_PERCENT)
                        {
                            // break, since elements are ordered by the module size deviation there cannot be
                            // any more interesting elements for the given p1.
                            break;
                        }

                        FinderPattern[] test = new FinderPattern[] { p1, p2, p3 };
                        ResultPoint.orderBestPatterns(test);

                        // Calculate the distances: a = topleft-bottomleft, b=topleft-topright, c = diagonal
                        FinderPatternInfo info = new FinderPatternInfo(test);
                        float             dA   = ResultPoint.distance(info.TopLeft, info.BottomLeft);
                        float             dC   = ResultPoint.distance(info.TopRight, info.BottomLeft);
                        float             dB   = ResultPoint.distance(info.TopLeft, info.TopRight);

                        // Check the sizes
                        float estimatedModuleCount = ((dA + dB) / p1.EstimatedModuleSize) / 2;
                        if (estimatedModuleCount > MAX_MODULE_COUNT_PER_EDGE || estimatedModuleCount < MIN_MODULE_COUNT_PER_EDGE)
                        {
                            continue;
                        }

                        // Calculate the difference of the edge lengths in percent
                        float vABBC = System.Math.Abs(((dA - dB) / System.Math.Min(dA, dB)));
                        if (vABBC >= 0.1f)
                        {
                            continue;
                        }

                        // Calculate the diagonal length by assuming a 90° angle at topleft
                        //UPGRADE_WARNING: Data types in Visual C# might be different.  Verify the accuracy of narrowing conversions. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1042'"
                        float dCpy = (float)System.Math.Sqrt(dA * dA + dB * dB);
                        // Compare to the real distance in %
                        float vPyC = System.Math.Abs(((dC - dCpy) / System.Math.Min(dC, dCpy)));

                        if (vPyC >= 0.1f)
                        {
                            continue;
                        }

                        // All tests passed!
                        results.Add(test);
                    }     // end iterate p3
                }         // end iterate p2
            }             // end iterate p1

            if (!(results.Count == 0))
            {
                FinderPattern[][] resultArray = new FinderPattern[results.Count][];
                for (int i = 0; i < results.Count; i++)
                {
                    resultArray[i] = (FinderPattern[])results[i];
                }
                return(resultArray);
            }

            // Nothing found!
            throw ReaderException.Instance;
        }