Example #1
0
        private void TestDenseNetwork(int inputs, int samples, int batchSize, int epochs)
        {
            var net   = new NeuralNetwork("deep_dense_test", 7);
            var model = new Sequential();

            model.AddLayer(new Dense(inputs, 5, Activation.Linear));
            model.AddLayer(new Dense(model.LastLayer, 4, Activation.Linear));
            model.AddLayer(new Dense(model.LastLayer, inputs, Activation.Linear));
            net.Model = model;


            List <Data> tData = new List <Data>();

            for (int i = 0; i < samples; ++i)
            {
                var input = new Tensor(model.Layer(0).InputShape);
                input.FillWithRand(10 * i, -2, 2);
                tData.Add(new Data(input, input.Mul(1.7f)));
            }

            net.Optimize(new SGD(0.02f), Loss.MeanSquareError);
            net.Fit(tData, batchSize, epochs, null, 2, Track.TrainError);

            for (int i = 0; i < tData.Count; ++i)
            {
                Assert.IsTrue(tData[i].Output.Equals(net.Predict(tData[i].Input)[0], 0.01f));
            }
        }
Example #2
0
        private Sequential CreateSequential(JToken model)
        {
            var seq = new Sequential(controller);

            var layers = model.SelectToken("config").Children();

            foreach (var layer in layers)
            {
                var layerType = layer.SelectToken("class_name");
                switch (layerType.Value <String>())
                {
                case "Linear":
                    // weight float tensor
                    var weightData   = layer.SelectToken("config.weights.data").ToObject <float[]>();
                    var weightShape  = layer.SelectToken("config.weights.shape").ToObject <int[]>();
                    var weightTensor = controller.floatTensorFactory.Create(_data: weightData, _shape: weightShape, _autograd: true);

                    // bias float tensor
                    var biasData   = layer.SelectToken("config.bias.data").ToObject <float[]>();
                    var biasShape  = layer.SelectToken("config.bias.shape").ToObject <int[]>();
                    var biasTensor = controller.floatTensorFactory.Create(_data: biasData, _shape: biasShape, _autograd: true);

                    var input  = layer.SelectToken("config.input").ToObject <int>();
                    var output = layer.SelectToken("config.output").ToObject <int>();

                    var linear = new Linear(controller, input: input, output: output, weights: weightTensor, bias: biasTensor);
                    seq.AddLayer(linear);
                    break;

                case "ReLU":
                    seq.AddLayer(new ReLU(controller));
                    break;

                case "Log":
                    seq.AddLayer(new OpenMined.Syft.Layer.Log(controller));
                    break;

                case "Dropout":
                    var rate    = layer.SelectToken("config.rate").ToObject <float>();
                    var dropout = new Dropout(controller, rate);
                    seq.AddLayer(dropout);
                    break;

                case "Softmax":
                    var dim = layer.SelectToken("config.dim").ToObject <int>();
                    seq.AddLayer(new Softmax(controller, dim));
                    break;
                }
            }

            return(seq);
        }
Example #3
0
        public DQN(Shape inputShape, int numberOfActions, int[] hiddenLayersNeurons, float learningRate, float discountFactor, int batchSize, BaseExperienceReplay memory)
            : this(inputShape, numberOfActions, learningRate, discountFactor, batchSize, memory)
        {
            Net = new NeuralNetwork("dqn");
            var Model = new Sequential();

            Model.AddLayer(new Flatten(inputShape));
            for (int i = 0; i < hiddenLayersNeurons.Length; ++i)
            {
                Model.AddLayer(new Dense(Model.LastLayer, hiddenLayersNeurons[i], Activation.ReLU));
            }
            Model.AddLayer(new Dense(Model.LastLayer, numberOfActions, Activation.Linear));
            Net.Model = Model;
            Net.Optimize(new Adam(learningRate), new CustomHuberLoss(ImportanceSamplingWeights));
        }
Example #4
0
        private void TestConvolutionLayer(Shape inputShape, int kernelSize, int kernelsNum, int stride, int samples, int batchSize, int epochs, TrainDataFunc convFunc)
        {
            var net   = new NeuralNetwork("convolution_test", 7);
            var model = new Sequential();

            model.AddLayer(new Convolution(inputShape, kernelSize, kernelsNum, stride, Activation.Linear)
            {
                KernelInitializer = new Initializers.Constant(1)
            });
            net.Model = model;

            var expectedKernels = new Tensor(new Shape(kernelSize, kernelSize, inputShape.Depth, kernelsNum));

            expectedKernels.FillWithRand(17);

            var tData = GenerateTrainingData(samples, model.LastLayer.InputShape, expectedKernels, convFunc);

            net.Optimize(new SGD(0.02f), Loss.MeanSquareError);
            net.Fit(tData, batchSize, epochs, null, 0, Track.Nothing);

            var paramsAndGrads = model.LastLayer.GetParametersAndGradients();

            for (int i = 0; i < expectedKernels.Length; ++i)
            {
                Assert.AreEqual(paramsAndGrads[0].Parameters.GetFlat(i), expectedKernels.GetFlat(i), 1e-2);
            }
        }
Example #5
0
        static void Main(string[] args)
        {
            Tensor.SetOpMode(Tensor.OpMode.GPU);

            var net        = new NeuralNetwork("test");
            var inputShape = new Shape(64, 64, 4);
            var model      = new Sequential();

            model.AddLayer(new Convolution(inputShape, 8, 32, 2, Activation.ELU));
            model.AddLayer(new Convolution(model.LastLayer, 4, 64, 2, Activation.ELU));
            model.AddLayer(new Convolution(model.LastLayer, 4, 128, 2, Activation.ELU));
            model.AddLayer(new Flatten(model.LastLayer));
            model.AddLayer(new Dense(model.LastLayer, 512, Activation.ELU));
            model.AddLayer(new Dense(model.LastLayer, 3, Activation.Softmax));
            net.Model = model;
            net.Optimize(new Adam(), Loss.Huber1);

            var input  = new Tensor(new Shape(64, 64, 4, 32)); input.FillWithRand();
            var output = new Tensor(new Shape(1, 3, 1, 32));

            for (int n = 0; n < output.BatchSize; ++n)
            {
                output[0, Tools.Rng.Next(output.Height), 0, n] = 1.0f;
            }

            var timer = new Stopwatch();

            timer.Start();

            net.FitBatched(input, output, 10, 1, Track.Nothing);

            timer.Stop();
            Trace.WriteLine($"{Math.Round(timer.ElapsedMilliseconds / 1000.0, 2)} seconds");
        }
Example #6
0
        private NeuralNetwork CreateFitTestNet()
        {
            var net   = new NeuralNetwork("fit_test", 7);
            var model = new Sequential();

            model.AddLayer(new Dense(3, 2, Activation.Linear)
            {
                KernelInitializer = new Initializers.Constant(1), UseBias = false
            });
            net.Model = model;
            net.Optimize(new SGD(0.07f), Loss.MeanSquareError);
            return(net);
        }
Example #7
0
        public void SoftCopyParameters()
        {
            var net   = new NeuralNetwork("test");
            var model = new Sequential();

            model.AddLayer(new Dense(2, 3, Activation.Linear));
            model.AddLayer(new Dense(3, 3, Activation.Linear));
            net.Model = model;
            net.ForceInitLayers();

            var net2 = net.Clone();

            net.SoftCopyParametersTo(net2, 0.1f);

            var netParams  = net2.GetParametersAndGradients();
            var net2Params = net2.GetParametersAndGradients();

            for (int i = 0; i < netParams.Count; ++i)
            {
                Assert.IsTrue(netParams[i].Parameters.Equals(net2Params[i].Parameters));
            }
        }
Example #8
0
        public Sequential CreateSequential(JToken model)
        {
            var seq = new Sequential(controller);

            var layers = model.SelectToken("config").Children();

            foreach (var layer in layers)
            {
                var layerType = layer.SelectToken("class_name");
                switch (layerType.Value <String>())
                {
                case "Linear":
                    // weight float tensor
                    var weightData = layer.SelectToken("config.weights.data").ToObject <float[]>();

                    var     input    = layer.SelectToken("config.input").ToObject <int>();
                    var     output   = layer.SelectToken("config.output").ToObject <int>();
                    float[] biasData = null;
                    if (layer.SelectToken("config.bias") == null)
                    {
                        biasData = layer.SelectToken("config.bias.data").ToObject <float[]>();
                    }
                    Linear linear = new Linear(controller, input: input, output: output, weights: weightData, bias: biasData);
                    seq.AddLayer(linear);
                    break;

                case "ReLU":
                    seq.AddLayer(new ReLU(controller));
                    break;

                case "Log":
                    seq.AddLayer(new OpenMined.Syft.Layer.Log(controller));
                    break;

                case "Dropout":
                    var rate    = layer.SelectToken("config.rate").ToObject <float>();
                    var dropout = new Dropout(controller, rate);
                    seq.AddLayer(dropout);
                    break;

                case "Softmax":
                    var dim = layer.SelectToken("config.dim").ToObject <int>();
                    seq.AddLayer(new Softmax(controller, dim));
                    break;

                case "Sigmoid":
                    seq.AddLayer(new Sigmoid(controller));
                    break;
                }
            }

            return(seq);
        }
Example #9
0
        private Sequential CreateSequential(List <String> model)
        {
            // TODO just assumes it is all in a seq model the seq model should probably
            // be in the JSON????
            var seq = new Sequential(controller);

            foreach (var l in model)
            {
                var   config = JObject.Parse(l);
                Layer layer  = null;
                switch ((string)config["name"])
                {
                case "linear":
                    layer = new Linear(controller, (int)config["input"], (int)config["output"]);
                    break;

                case "softmax":
                    layer = new Softmax(controller, (int)config["dim"]);
                    break;

                case "relu":
                    layer = new ReLU(controller);
                    break;

                case "log":
                    layer = new Log(controller);
                    break;

                case "dropout":
                    layer = new Dropout(controller, (float)config["rate"]);
                    break;
                }
                seq.AddLayer(layer);
            }

            return(seq);
        }
Example #10
0
        private void TestDenseLayer(int inputs, int outputs, int samples, int batchSize, int epochs)
        {
            var net   = new NeuralNetwork("dense_test", 7);
            var model = new Sequential();

            model.AddLayer(new Dense(inputs, outputs, Activation.Linear)
            {
                KernelInitializer = new Initializers.Constant(1), UseBias = false
            });
            net.Model = model;

            var expectedWeights = new Tensor(new[] { 1.1f, 0.1f, -1.3f, 0.2f, -0.9f, 0.7f }, new Shape(3, 2));
            var tData           = GenerateTrainingData(samples, model.LastLayer.InputShape, expectedWeights, MatMult);

            net.Optimize(new SGD(0.07f), Loss.MeanSquareError);
            net.Fit(tData, batchSize, epochs, null, 2, Track.TrainError);

            var paramsAndGrads = model.LastLayer.GetParametersAndGradients();

            for (int i = 0; i < expectedWeights.Length; ++i)
            {
                Assert.AreEqual(paramsAndGrads[0].Parameters.GetFlat(i), expectedWeights.GetFlat(i), 1e-2);
            }
        }
Example #11
0
        public DQNConv(int[] inputSize, int numberOfActions, float learningRate, float discountFactor, int batchSize, BaseExperienceReplay memory)
            : base(null, numberOfActions, learningRate, discountFactor, batchSize, memory)
        {
            Tensor.SetOpMode(Tensor.OpMode.GPU);

            InputSize = inputSize;
            Shape inputShape = new Shape(inputSize[0], inputSize[1], TemporalDataSize);

            Net = new NeuralNetwork("DQNConv");
            var Model = new Sequential();

            Model.AddLayer(new Convolution(inputShape, 8, 32, 2, Activation.ELU));
            Model.AddLayer(new Convolution(Model.LastLayer, 4, 64, 2, Activation.ELU));
            Model.AddLayer(new Convolution(Model.LastLayer, 4, 128, 2, Activation.ELU));
            Model.AddLayer(new Flatten(Model.LastLayer));
            Model.AddLayer(new Dense(Model.LastLayer, 512, Activation.ELU));
            Model.AddLayer(new Dense(Model.LastLayer, numberOfActions, Activation.Softmax));
            Net.Model = Model;
            Net.Optimize(new Adam(learningRate), new CustomHuberLoss(ImportanceSamplingWeights));
        }
Example #12
0
        public void ProcessMessage(string json_message, MonoBehaviour owner, Action <string> response)
        {
            Command msgObj = JsonUtility.FromJson <Command> (json_message);

            try
            {
                switch (msgObj.objectType)
                {
                case "Optimizer":
                {
                    if (msgObj.functionCall == "create")
                    {
                        string optimizer_type = msgObj.tensorIndexParams[0];

                        // Extract parameters
                        List <int> p = new List <int>();
                        for (int i = 1; i < msgObj.tensorIndexParams.Length; i++)
                        {
                            p.Add(int.Parse(msgObj.tensorIndexParams[i]));
                        }
                        List <float> hp = new List <float>();
                        for (int i = 0; i < msgObj.hyperParams.Length; i++)
                        {
                            hp.Add(float.Parse(msgObj.hyperParams[i]));
                        }

                        Optimizer optim = null;

                        if (optimizer_type == "sgd")
                        {
                            optim = new SGD(this, p, hp[0], hp[1], hp[2]);
                        }
                        else if (optimizer_type == "rmsprop")
                        {
                            optim = new RMSProp(this, p, hp[0], hp[1], hp[2], hp[3]);
                        }
                        else if (optimizer_type == "adam")
                        {
                            optim = new Adam(this, p, hp[0], hp[1], hp[2], hp[3], hp[4]);
                        }

                        response(optim.Id.ToString());
                        return;
                    }
                    else
                    {
                        Optimizer optim = this.GetOptimizer(msgObj.objectIndex);
                        response(optim.ProcessMessage(msgObj, this));

                        return;
                    }
                }

                case "FloatTensor":
                {
                    if (msgObj.objectIndex == 0 && msgObj.functionCall == "create")
                    {
                        FloatTensor tensor = floatTensorFactory.Create(_shape: msgObj.shape, _data: msgObj.data, _shader: this.Shader);
                        response(tensor.Id.ToString());
                        return;
                    }
                    else
                    {
                        FloatTensor tensor = floatTensorFactory.Get(msgObj.objectIndex);
                        // Process message's function
                        response(tensor.ProcessMessage(msgObj, this));
                        return;
                    }
                }

                case "IntTensor":
                {
                    if (msgObj.objectIndex == 0 && msgObj.functionCall == "create")
                    {
                        int[] data = new int[msgObj.data.Length];
                        for (int i = 0; i < msgObj.data.Length; i++)
                        {
                            data[i] = (int)msgObj.data[i];
                        }
                        IntTensor tensor = intTensorFactory.Create(_shape: msgObj.shape, _data: data);
                        response(tensor.Id.ToString());
                        return;
                    }
                    else
                    {
                        IntTensor tensor = intTensorFactory.Get(msgObj.objectIndex);
                        // Process message's function
                        response(tensor.ProcessMessage(msgObj, this));
                        return;
                    }
                }

                case "agent":
                {
                    if (msgObj.functionCall == "create")
                    {
                        Layer     model     = (Layer)GetModel(int.Parse(msgObj.tensorIndexParams[0]));
                        Optimizer optimizer = optimizers[int.Parse(msgObj.tensorIndexParams[1])];
                        response(new Syft.NN.RL.Agent(this, model, optimizer).Id.ToString());
                        return;
                    }

                    //Debug.Log("Getting Model:" + msgObj.objectIndex);
                    Syft.NN.RL.Agent agent = this.GetAgent(msgObj.objectIndex);
                    response(agent.ProcessMessageLocal(msgObj, this));
                    return;
                }

                case "model":
                {
                    if (msgObj.functionCall == "create")
                    {
                        string model_type = msgObj.tensorIndexParams[0];

                        Debug.LogFormat("<color=magenta>createModel:</color> {0}", model_type);

                        if (model_type == "linear")
                        {
                            response(this.BuildLinear(msgObj.tensorIndexParams).Id.ToString());
                            return;
                        }
                        else if (model_type == "relu")
                        {
                            response(this.BuildReLU().Id.ToString());
                            return;
                        }
                        else if (model_type == "log")
                        {
                            response(this.BuildLog().Id.ToString());
                            return;
                        }
                        else if (model_type == "dropout")
                        {
                            response(this.BuildDropout(msgObj.tensorIndexParams).Id.ToString());
                            return;
                        }
                        else if (model_type == "sigmoid")
                        {
                            response(this.BuildSigmoid().Id.ToString());
                            return;
                        }
                        else if (model_type == "sequential")
                        {
                            response(this.BuildSequential().Id.ToString());
                            return;
                        }
                        else if (model_type == "softmax")
                        {
                            response(this.BuildSoftmax(msgObj.tensorIndexParams).Id.ToString());
                            return;
                        }
                        else if (model_type == "logsoftmax")
                        {
                            response(this.BuildLogSoftmax(msgObj.tensorIndexParams).Id.ToString());
                            return;
                        }
                        else if (model_type == "tanh")
                        {
                            response(new Tanh(this).Id.ToString());
                            return;
                        }
                        else if (model_type == "crossentropyloss")
                        {
                            response(new CrossEntropyLoss(this, int.Parse(msgObj.tensorIndexParams[1])).Id.ToString());
                            return;
                        }
                        else if (model_type == "categorical_crossentropy")
                        {
                            response(new CategoricalCrossEntropyLoss(this).Id.ToString());
                            return;
                        }
                        else if (model_type == "nllloss")
                        {
                            response(new NLLLoss(this).Id.ToString());
                            return;
                        }
                        else if (model_type == "mseloss")
                        {
                            response(new MSELoss(this).Id.ToString());
                            return;
                        }
                        else if (model_type == "embedding")
                        {
                            response(new Embedding(this, int.Parse(msgObj.tensorIndexParams[1]), int.Parse(msgObj.tensorIndexParams[2])).Id.ToString());
                            return;
                        }
                        else
                        {
                            Debug.LogFormat("<color=red>Model Type Not Found:</color> {0}", model_type);
                        }
                    }
                    else
                    {
                        //Debug.Log("Getting Model:" + msgObj.objectIndex);
                        Model model = this.GetModel(msgObj.objectIndex);
                        response(model.ProcessMessage(msgObj, this));
                        return;
                    }
                    response("Unity Error: SyftController.processMessage: Command not found:" + msgObj.objectType + ":" + msgObj.functionCall);
                    return;
                }

                case "controller":
                {
                    if (msgObj.functionCall == "num_tensors")
                    {
                        response(floatTensorFactory.Count() + "");
                        return;
                    }
                    else if (msgObj.functionCall == "num_models")
                    {
                        response(models.Count + "");
                        return;
                    }
                    else if (msgObj.functionCall == "new_tensors_allowed")
                    {
                        Debug.LogFormat("New Tensors Allowed:{0}", msgObj.tensorIndexParams[0]);
                        if (msgObj.tensorIndexParams[0] == "True")
                        {
                            allow_new_tensors = true;
                        }
                        else if (msgObj.tensorIndexParams[0] == "False")
                        {
                            allow_new_tensors = false;
                        }
                        else
                        {
                            throw new Exception("Invalid parameter for new_tensors_allowed. Did you mean true or false?");
                        }

                        response(allow_new_tensors + "");
                        return;
                    }
                    else if (msgObj.functionCall == "load_floattensor")
                    {
                        FloatTensor tensor = floatTensorFactory.Create(filepath: msgObj.tensorIndexParams[0], _shader: this.Shader);
                        response(tensor.Id.ToString());
                        return;
                    }
                    else if (msgObj.functionCall == "set_seed")
                    {
                        Random.InitState(int.Parse(msgObj.tensorIndexParams[0]));
                        response("Random seed set!");
                        return;
                    }
                    else if (msgObj.functionCall == "concatenate")
                    {
                        List <int> tensor_ids = new List <int>();
                        for (int i = 1; i < msgObj.tensorIndexParams.Length; i++)
                        {
                            tensor_ids.Add(int.Parse(msgObj.tensorIndexParams[i]));
                        }
                        FloatTensor result = Functional.Concatenate(floatTensorFactory, tensor_ids, int.Parse(msgObj.tensorIndexParams[0]));
                        response(result.Id.ToString());
                        return;
                    }
                    else if (msgObj.functionCall == "ones")
                    {
                        int[] dims = new int[msgObj.tensorIndexParams.Length];
                        for (int i = 0; i < msgObj.tensorIndexParams.Length; i++)
                        {
                            dims[i] = int.Parse(msgObj.tensorIndexParams[i]);
                        }
                        FloatTensor result = Functional.Ones(floatTensorFactory, dims);
                        response(result.Id.ToString());
                        return;
                    }
                    else if (msgObj.functionCall == "randn")
                    {
                        int[] dims = new int[msgObj.tensorIndexParams.Length];
                        for (int i = 0; i < msgObj.tensorIndexParams.Length; i++)
                        {
                            dims[i] = int.Parse(msgObj.tensorIndexParams[i]);
                        }
                        FloatTensor result = Functional.Randn(floatTensorFactory, dims);
                        response(result.Id.ToString());
                        return;
                    }
                    else if (msgObj.functionCall == "random")
                    {
                        int[] dims = new int[msgObj.tensorIndexParams.Length];
                        for (int i = 0; i < msgObj.tensorIndexParams.Length; i++)
                        {
                            dims[i] = int.Parse(msgObj.tensorIndexParams[i]);
                        }
                        FloatTensor result = Functional.Random(floatTensorFactory, dims);
                        response(result.Id.ToString());
                        return;
                    }
                    else if (msgObj.functionCall == "zeros")
                    {
                        int[] dims = new int[msgObj.tensorIndexParams.Length];
                        for (int i = 0; i < msgObj.tensorIndexParams.Length; i++)
                        {
                            dims[i] = int.Parse(msgObj.tensorIndexParams[i]);
                        }
                        FloatTensor result = Functional.Zeros(floatTensorFactory, dims);
                        response(result.Id.ToString());
                        return;
                    }
                    else if (msgObj.functionCall == "model_from_json")
                    {
                        Debug.Log("Loading Model from JSON:");
                        var json_str = msgObj.tensorIndexParams[0];
                        var config   = JObject.Parse(json_str);

                        Sequential model;

                        if ((string)config["class_name"] == "Sequential")
                        {
                            model = this.BuildSequential();
                        }
                        else
                        {
                            response("Unity Error: SyftController.processMessage: while Loading model, Class :" + config["class_name"] + " is not implemented");
                            return;
                        }

                        for (int i = 0; i < config["config"].ToList().Count; i++)
                        {
                            var layer_desc        = config["config"][i];
                            var layer_config_desc = layer_desc["config"];

                            if ((string)layer_desc["class_name"] == "Linear")
                            {
                                int previous_output_dim;

                                if (i == 0)
                                {
                                    previous_output_dim = (int)layer_config_desc["batch_input_shape"][layer_config_desc["batch_input_shape"].ToList().Count - 1];
                                }
                                else
                                {
                                    previous_output_dim = (int)layer_config_desc["units"];
                                }

                                string[] parameters = { "linear", previous_output_dim.ToString(), layer_config_desc["units"].ToString(), "Xavier" };
                                Layer    layer      = this.BuildLinear(parameters);
                                model.AddLayer(layer);

                                string activation_name = layer_config_desc["activation"].ToString();

                                if (activation_name != "linear")
                                {
                                    Layer activation;
                                    if (activation_name == "softmax")
                                    {
                                        parameters = new string[] { activation_name, "1" };
                                        activation = this.BuildSoftmax(parameters);
                                    }
                                    else if (activation_name == "relu")
                                    {
                                        activation = this.BuildReLU();
                                    }
                                    else
                                    {
                                        response("Unity Error: SyftController.processMessage: while Loading activations, Activation :" + activation_name + " is not implemented");
                                        return;
                                    }
                                    model.AddLayer(activation);
                                }
                            }
                            else
                            {
                                response("Unity Error: SyftController.processMessage: while Loading layers, Layer :" + layer_desc["class_name"] + " is not implemented");
                                return;
                            }
                        }

                        response(model.Id.ToString());
                        return;
                    }
                    else if (msgObj.functionCall == "from_proto")
                    {
                        Debug.Log("Loading Model from ONNX:");
                        var filename = msgObj.tensorIndexParams[0];

                        var        input      = File.OpenRead(filename);
                        ModelProto modelProto = ModelProto.Parser.ParseFrom(input);

                        Sequential model = this.BuildSequential();

                        foreach (NodeProto node in modelProto.Graph.Node)
                        {
                            Layer      layer;
                            GraphProto g = ONNXTools.GetSubGraphFromNodeAndMainGraph(node, modelProto.Graph);
                            if (node.OpType == "Gemm")
                            {
                                layer = new Linear(this, g);
                            }
                            else if (node.OpType == "Dropout")
                            {
                                layer = new Dropout(this, g);
                            }
                            else if (node.OpType == "Relu")
                            {
                                layer = new ReLU(this, g);
                            }
                            else if (node.OpType == "Softmax")
                            {
                                layer = new Softmax(this, g);
                            }
                            else
                            {
                                response("Unity Error: SyftController.processMessage: Layer not yet implemented for deserialization:");
                                return;
                            }
                            model.AddLayer(layer);
                        }

                        response(model.Id.ToString());
                        return;
                    }
                    else if (msgObj.functionCall == "to_proto")
                    {
                        ModelProto model    = this.ToProto(msgObj.tensorIndexParams);
                        string     filename = msgObj.tensorIndexParams[2];
                        string     type     = msgObj.tensorIndexParams[3];
                        if (type == "json")
                        {
                            response(model.ToString());
                        }
                        else
                        {
                            using (var output = File.Create(filename))
                            {
                                model.WriteTo(output);
                            }
                            response(new FileInfo(filename).FullName);
                        }
                        return;
                    }

                    response("Unity Error: SyftController.processMessage: Command not found:" + msgObj.objectType + ":" + msgObj.functionCall);
                    return;
                }

                case "Grid":
                    if (msgObj.functionCall == "learn")
                    {
                        var inputId  = int.Parse(msgObj.tensorIndexParams[0]);
                        var targetId = int.Parse(msgObj.tensorIndexParams[1]);

                        response(this.grid.Run(inputId, targetId, msgObj.configurations, owner));
                        return;
                    }

                    if (msgObj.functionCall == "getResults")
                    {
                        this.grid.GetResults(msgObj.experimentId, response);
                        return;
                    }

                    // like getResults but doesn't pause to wait for results
                    // this function will return right away telling you if
                    // it knows whether or not it is done
                    if (msgObj.functionCall == "checkStatus")
                    {
                        this.grid.CheckStatus(msgObj.experimentId, response);
                        return;
                    }

                    break;

                default:
                    break;
                }
            }
            catch (Exception e)
            {
                Debug.LogFormat("<color=red>{0}</color>", e.ToString());
                response("Unity Error: " + e.ToString());
                return;
            }

            // If not executing createTensor or tensor function, return default error.

            response("Unity Error: SyftController.processMessage: Command not found:" + msgObj.objectType + ":" + msgObj.functionCall);
            return;
        }